Avaldis 14: "x" Superscript, "x" , Baseline natural log left parenthesis, "x" , right parenthesis minus "x" "x" Superscript, left parenthesis, "x" minus 1 , right parenthesis , Baseline equals 0xxlnx−xxx−1=0
14
2. Substitute y=x
15
Avaldis 16:
16
Avaldis 17: "x" Superscript, "x" , Baseline natural log left parenthesis, "x" , right parenthesis minus "x" Superscript, "x" , Baseline equals 0xxlnx−xx=0
17
3. Simplify
18
Avaldis 19:
19
Avaldis 20: natural log left parenthesis, "x" , right parenthesis minus 1 equals 0lnx−1=0
20
4. Divide by x^x, because x can't be 0.
21
Avaldis 22:
22
Avaldis 23: natural log left parenthesis, "x" , right parenthesis equals 1lnx=1
23
Avaldis 24: "x" equals "e"x=e
24
Add 1 and solve.
25
Avaldis 26:
26
Avaldis 27: "x" equals "y" equals "e"x=y=e
27
x=y, so y also equals e. This means the intersection is at (e,e)