Loading...
Sum af række af ulige tal 2
Guardar una copia
Logotipo de Desmos
Iniciar Sesión
Registrarse
summen af ethvert (vilkårligt)
summen af ethvert (vilkårligt)
43
ulige sluttal og de foregående
ulige sluttal og de foregående
44
ulige tal, startende med 1. Fx
ulige tal, startende med 1. Fx
45
er summen af: 1 + 3 + 5 + 7 +
er summen af: 1 + 3 + 5 + 7 +
46
9 = 25. Se nedenfor:
9 = 25. Se nedenfor:
47
"x" Subscript, 2 , Baseline
x
2
"y" Subscript, 2 , Baseline
y
2
1
1
1
1
r1c3:
3
3
4
4
r2c3:
5
5
9
9
r3c3:
7
7
16
1
6
r4c3:
9
9
25
2
5
r5c3:
11
1
1
36
3
6
r6c3:
13
1
3
49
4
9
r7c3:
r8c3:
48
Expresión 49: "y" Subscript, 2 , Baseline tilde "a" "x" squared plus "b" "x" Subscript, 2 , Baseline plus "c"
y
2
~
a
x
2
2
+
b
x
2
+
c
49
Bevis for formlens rigtighed
Bevis for formlens rigtighed
Ocultar esta carpeta de los estudiantes.
50
Vi skal bevise, at den både
Vi skal bevise, at den både
51
gælder for starttallet 1 og for
gælder for starttallet 1 og for
52
( n + 1 ). Vi indsætter først 1 på
( n + 1 ). Vi indsætter først 1 på
53
n's plads i ligningen: 2 n - 1 =
n's plads i ligningen: 2 n - 1 =
54
n ² og får, at 1 = 1 ², hvorfor
n ² og får, at 1 = 1 ², hvorfor
55
ligningen er sand for n = 1.
ligningen er sand for n = 1.
56
Det var jo nemt.
Det var jo nemt.
57
Indsætter vi ( n + 1 ) i stedet
Indsætter vi ( n + 1 ) i stedet
58
for n, skal summen af tallene
for n, skal summen af tallene
59
fra 1 til og med sluttallet give
fra 1 til og med sluttallet give
60
( n + 1 ) ² i stedet for n ².
( n + 1 ) ² i stedet for n ².
61
Følgelig skal forskellen mellem
Følgelig skal forskellen mellem
62
( n + 1 ) ² og n ², som er lig
( n + 1 ) ² og n ², som er lig
63
med ( 2 n + 1 ), lægges til på
med ( 2 n + 1 ), lægges til på
64
begge sider af lighedstegnet.
begge sider af lighedstegnet.
65
Og dermed er:
Og dermed er:
66
1 + 3 + 5 + 7 ... ( 2 n - 1 ) +
1 + 3 + 5 + 7 ... ( 2 n - 1 ) +
67
( 2 n + 1 ) =
( 2 n + 1 ) =
68
n ^ 2 + ( 2 n + 1 ) =
n ^ 2 + ( 2 n + 1 ) =
69
( n + 1 ) ²
( n + 1 ) ²
70
Hvis n fx er 7, så er sluttallet
Hvis n fx er 7, så er sluttallet
71
givet ved 2 ⋅ 7 + 1 = 15, mens
givet ved 2 ⋅ 7 + 1 = 15, mens
72
det næstsidste tal er bestemt
det næstsidste tal er bestemt
73
ved 2 ⋅ 7 - 1 = 13. Og summen
ved 2 ⋅ 7 - 1 = 13. Og summen
74
af de ulige tal fra 1 til 15 er
af de ulige tal fra 1 til 15 er
75
bestemt ved ( n + 1 ) ² =
bestemt ved ( n + 1 ) ² =
76
8 ² = 64:
8 ² = 64:
77
Hvis sluttallet ( 2 ⋅ n - 1 ) =
Hvis sluttallet ( 2 ⋅ n - 1 ) =
78
Expresión 79: "k" equals 27
k
=
2
7
1
1
227
2
2
7
79
så er summen af talrækken =
så er summen af talrækken =
80
Expresión 81: left parenthesis, StartFraction, "k" plus 1 Over 2 , EndFraction , right parenthesis squared
k
+
1
2
2
equals
=
196
1
9
6
81
Expresión 82: Start sum from "i" equals 1 to "k" squared plus 2 "k" plus 1, end sum, 1 quarter
k
2
+
2
k
+
1
∑
i
=
1
1
4
equals
=
196
1
9
6
82
idet n =
idet n =
83
Expresión 84: StartFraction, "k" plus 1 Over 2 , EndFraction
k
+
1
2
equals
=
14
1
4
84
Linjer og punkter
Linjer og punkter
Ocultar esta carpeta de los estudiantes.
85
93
impulsado por
impulsado por
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
funciones
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Iniciar Sesión
o
Registrarse
para guardar sus gráficas
Nueva gráfica en blanco
Ejemplos
Rectas: Ecuación explícita
ejemplo
Rectas: Ecuación punto-pendiente
ejemplo
Rectas: Ecuación que pasa por dos puntos
ejemplo
Parábolas: Ecuación general
ejemplo
Parábolas: Ecuación cánonica
ejemplo
Parábolas: Ecuación general + Tangente
ejemplo
Trigonometría: Período y Amplitud
ejemplo
Trigonometría: Fase
ejemplo
Trigonometría: Interferencia de ondas
ejemplo
Trigonometría: Círculo unitario
ejemplo
Secciones cónicas: Circunferencia
ejemplo
Secciones cónicas: Parábola y Foco
ejemplo
Secciones cónicas: Elipse con Focos
ejemplo
Secciones cónicas: Hipérbola
ejemplo
Polar: Rosa
ejemplo
Polar: Espiral logarítmica
ejemplo
Polar: Caracol de Pascal
ejemplo
Polar: Secciones cónicas
ejemplo
Ecuaciones parámetricas: Introducción
ejemplo
Ecuaciones parámetricas: Cicloide
ejemplo
Transformaciones: Transformación de funciones
ejemplo
Transformaciones: Expansión y Compresión
ejemplo
Transformaciones: Función inversa
ejemplo
Estadísticas: Regresión lineal
ejemplo
Estadística: Cuarteto de Anscombe
ejemplo
Estadísticas: Ecuación de 4.º grado
ejemplo
Listas: Curvas sinusoidales
ejemplo
Listas: Hiloramas
ejemplo
Listas: Graficar una lista de puntos
ejemplo
Cálculo: Derivadas
ejemplo
Cálculo: Recta Secante
ejemplo
Cálculo: Línea Tangente
ejemplo
Cálculo: Serie de Taylor de sen(x)
ejemplo
Cálculo: Integrales
ejemplo
Cálculo: Integral definida
ejemplo
Cálculo: Teorema Fundamental del Cálculo
ejemplo
Términos de Servicio
|
Política de privacidad