Loading...
Sum af række af ulige tal 2
Зберегти копію
Логотип Desmos
Увійти
Зареєструватися
summen af ethvert (vilkårligt)
summen af ethvert (vilkårligt)
43
ulige sluttal og de foregående
ulige sluttal og de foregående
44
ulige tal, startende med 1. Fx
ulige tal, startende med 1. Fx
45
er summen af: 1 + 3 + 5 + 7 +
er summen af: 1 + 3 + 5 + 7 +
46
9 = 25. Se nedenfor:
9 = 25. Se nedenfor:
47
"x" Subscript, 2 , Baseline
x
2
"y" Subscript, 2 , Baseline
y
2
1
1
1
1
r1c3:
3
3
4
4
r2c3:
5
5
9
9
r3c3:
7
7
16
1
6
r4c3:
9
9
25
2
5
r5c3:
11
1
1
36
3
6
r6c3:
13
1
3
49
4
9
r7c3:
r8c3:
48
Вираз 49: "y" Subscript, 2 , Baseline tilde "a" "x" squared plus "b" "x" Subscript, 2 , Baseline plus "c"
y
2
~
a
x
2
2
+
b
x
2
+
c
49
Bevis for formlens rigtighed
Bevis for formlens rigtighed
Приховати цю папку від студентів.
50
Vi skal bevise, at den både
Vi skal bevise, at den både
51
gælder for starttallet 1 og for
gælder for starttallet 1 og for
52
( n + 1 ). Vi indsætter først 1 på
( n + 1 ). Vi indsætter først 1 på
53
n's plads i ligningen: 2 n - 1 =
n's plads i ligningen: 2 n - 1 =
54
n ² og får, at 1 = 1 ², hvorfor
n ² og får, at 1 = 1 ², hvorfor
55
ligningen er sand for n = 1.
ligningen er sand for n = 1.
56
Det var jo nemt.
Det var jo nemt.
57
Indsætter vi ( n + 1 ) i stedet
Indsætter vi ( n + 1 ) i stedet
58
for n, skal summen af tallene
for n, skal summen af tallene
59
fra 1 til og med sluttallet give
fra 1 til og med sluttallet give
60
( n + 1 ) ² i stedet for n ².
( n + 1 ) ² i stedet for n ².
61
Følgelig skal forskellen mellem
Følgelig skal forskellen mellem
62
( n + 1 ) ² og n ², som er lig
( n + 1 ) ² og n ², som er lig
63
med ( 2 n + 1 ), lægges til på
med ( 2 n + 1 ), lægges til på
64
begge sider af lighedstegnet.
begge sider af lighedstegnet.
65
Og dermed er:
Og dermed er:
66
1 + 3 + 5 + 7 ... ( 2 n - 1 ) +
1 + 3 + 5 + 7 ... ( 2 n - 1 ) +
67
( 2 n + 1 ) =
( 2 n + 1 ) =
68
n ^ 2 + ( 2 n + 1 ) =
n ^ 2 + ( 2 n + 1 ) =
69
( n + 1 ) ²
( n + 1 ) ²
70
Hvis n fx er 7, så er sluttallet
Hvis n fx er 7, så er sluttallet
71
givet ved 2 ⋅ 7 + 1 = 15, mens
givet ved 2 ⋅ 7 + 1 = 15, mens
72
det næstsidste tal er bestemt
det næstsidste tal er bestemt
73
ved 2 ⋅ 7 - 1 = 13. Og summen
ved 2 ⋅ 7 - 1 = 13. Og summen
74
af de ulige tal fra 1 til 15 er
af de ulige tal fra 1 til 15 er
75
bestemt ved ( n + 1 ) ² =
bestemt ved ( n + 1 ) ² =
76
8 ² = 64:
8 ² = 64:
77
Hvis sluttallet ( 2 ⋅ n - 1 ) =
Hvis sluttallet ( 2 ⋅ n - 1 ) =
78
Вираз 79: "k" equals 27
k
=
2
7
79
så er summen af talrækken =
så er summen af talrækken =
80
Вираз 81: left parenthesis, StartFraction, "k" plus 1 Over 2 , EndFraction , right parenthesis squared
k
+
1
2
2
81
Вираз 82: Start sum from "i" equals 1 to "k" squared plus 2 "k" plus 1, end sum, 1 quarter
k
2
+
2
k
+
1
∑
i
=
1
1
4
82
idet n =
idet n =
83
Вираз 84: StartFraction, "k" plus 1 Over 2 , EndFraction
k
+
1
2
84
Linjer og punkter
Linjer og punkter
Приховати цю папку від студентів.
85
93
за підтримки
за підтримки
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
функції
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Увійти
або
Зареєструватися
щоб зберегти ваші графіки!
Новий порожній графік
Приклади
Прямі: Рівняння, задане кутовим коефіцієнтом
приклад
Прямі: Рівняння, задане точкою і кутовим коефіцієнтом
приклад
Прямі: Рівняння, задане двома точками
приклад
Параболи: Стандартна форма
приклад
Параболи: Форма, задана вершиною
приклад
Параболи: Стандартна форма + дотична до параболи
приклад
Тригонометрія: Період та амплітуда
приклад
Тригонометрія: Фаза
приклад
Тригонометрія: Інтерференція хвиль
приклад
Тригонометрія: Одиничне коло
приклад
Конічні перерізи: Коло
приклад
Конічні перерізи: Парабола та її фокус
приклад
Конічні перерізи: Еліпс та його фокуси
приклад
Конічні перерізи: Гіпербола
приклад
Полярні координати: Троянда
приклад
Полярні координати: Логарифмічна спіраль
приклад
Полярні координати: Равлик Паскаля
приклад
Полярні координати: Конічні перерізи
приклад
Параметричні рівняння: Вступ
приклад
Параметричні рівняння: Циклоїда
приклад
Перетворення: Паралельне перенесення функції
приклад
Перетворення: Масштабування функції
приклад
Перетворення: Обернена функція
приклад
Статистика: Лінійна регресія
приклад
Статистика: Квартет Анскомба
приклад
Статистика: Многочлен 4-го порядку
приклад
Списки: Сімейство синусоїд
приклад
Списки: Накладання кривих
приклад
Списки: Будуємо список точок
приклад
Математичний аналіз: Похідні
приклад
Математичний аналіз: Січна
приклад
Математичний аналіз: Дотична
приклад
Математичний аналіз: Розклад sin(x) у ряд Тейлора
приклад
Математичний аналіз: Інтеграли
приклад
Математичний аналіз: Інтеграл зі змінними межами
приклад
Математичний аналіз: Фундаментальна теорема мат. аналізу
приклад
Умови користування
|
Політика конфіденційності