We can obtain this equation(8) given below by y=x + e - A
7
Expression 8: "y" equals sine to the negative 1st power left parenthesis, "u" sin left parenthesis, "A" minus sin to the negative 1st power left parenthesis, StartFraction, sin "x" Over "u" , EndFraction , right parenthesis , right parenthesis , right parenthesis plus "x" minus "A" left brace, 0 less than "x" less than StartFraction, pi Over 2 , EndFraction , right bracey=sin−1usinA−sin−1sinxu+x−A0<x<π2
8
Expression 9: negative StartFraction, cos left parenthesis, "A" minus sin to the negative 1st power left parenthesis, StartNestedFraction, sin "x" NestedOver "u" , EndNestedFraction , right parenthesis , right parenthesis cos "x" Over StartRoot, left parenthesis, 1 minus "u" squared sin squared left parenthesis, "A" minus sin to the negative 1st power left parenthesis, StartNestedFraction, sin "x" NestedOver "u" , EndNestedFraction , right parenthesis , right parenthesis , right parenthesis left parenthesis, 1 minus StartNestedFraction, sin squared "x" NestedOver "u" squared , EndNestedFraction , right parenthesis , EndRoot , EndFraction plus 1 equals 0 left brace, 0 less than "x" less than StartFraction, pi Over 2 , EndFraction , right brace−cosA−sin−1sinxucosx1−u2sin2A−sin−1sinxu1−sin2xu2+1=00<x<π2