Loading...
Red Area = 6
Save Copy
Desmos Logo
Log In
Sign Up
Expression 19: "M" Subscript, 1 , Baseline equals StartFraction, "M" Subscript, 2 , Baseline Over "C" Subscript, 2 , Baseline , EndFraction "C" Subscript, 1 , Baseline
M
1
=
M
2
C
2
C
1
equals
=
3.6
3
.
6
19
Expression 20: "M" Subscript, 2 , Baseline equals StartRoot, 9 , EndRoot
M
2
=
9
equals
=
3
3
20
Expression 21: "m" Subscript, 1 , Baseline equals StartFraction, "M" Subscript, 2 , Baseline Over "M" Subscript, 1 , Baseline minus "D" Subscript, 1 , Baseline , EndFraction
m
1
=
M
2
M
1
−
D
1
equals
=
negative 1.2 5
−
1
.
2
5
21
Expression 22: "y" equals "m" Subscript, 1 , Baseline left parenthesis, "x" minus "D" Subscript, 1 , Baseline , right parenthesis
y
=
m
1
x
−
D
1
22
Expression 23: "y" equals "C" Subscript, 2 , Baseline
y
=
C
2
equals
=
5
5
23
Expression 24: "m" Subscript, 1 , Baseline left parenthesis, "E" Subscript, 1 , Baseline minus "D" Subscript, 1 , Baseline , right parenthesis tilde "E" Subscript, 2 , Baseline
m
1
E
1
−
D
1
~
E
2
24
Expression 25: "E" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline
E
2
=
C
2
equals
=
5
5
25
Expression 26: "L" Subscript, 1 , Baseline equals StartFraction, "C" Subscript, 1 , Baseline plus "E" Subscript, 1 , Baseline Over 2 , EndFraction
L
1
=
C
1
+
E
1
2
equals
=
4
4
26
Expression 27: "L" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline
L
2
=
C
2
equals
=
5
5
27
Graphs
Graphs
Hide this folder from students.
28
Expression 29: polygon left parenthesis, "A" , "D" , "M" , right parenthesis
p
o
l
y
g
o
n
A
,
D
,
M
29
Expression 30: polygon left parenthesis, "C" , "D" , "M" , right parenthesis
p
o
l
y
g
o
n
C
,
D
,
M
30
Expression 31: polygon left parenthesis, "C" , "D" , "M" , right parenthesis
p
o
l
y
g
o
n
C
,
D
,
M
31
Expression 32: polygon left parenthesis, "C" , "D" , "M" , right parenthesis
p
o
l
y
g
o
n
C
,
D
,
M
32
Expression 33: polygon left parenthesis, "C" , "D" , "M" , right parenthesis
p
o
l
y
g
o
n
C
,
D
,
M
33
Expression 34: polygon left parenthesis, "C" , "E" , "M" , right parenthesis
p
o
l
y
g
o
n
C
,
E
,
M
34
Expression 35: polygon left parenthesis, "A" , "B" , "C" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
D
35
Expression 36: polygon left parenthesis, "D" , "E" , right parenthesis
p
o
l
y
g
o
n
D
,
E
36
Expression 37: polygon left parenthesis, "A" , "C" , right parenthesis
p
o
l
y
g
o
n
A
,
C
37
Points
Points
Hide this folder from students.
38
50
powered by
powered by
A
B
C
D
E
M
4
9
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy