Expression 36: "h" left parenthesis, "x" , right parenthesis equals StartFraction, 1 Over "f" left parenthesis, "x" , right parenthesis , EndFraction left brace, "f" left parenthesis, "x" , right parenthesis greater than 0 , "f" left parenthesis, "x" , right parenthesis less than 0 , right bracehx=1fxfx>0,fx<0
36
differentieres:
37
Expression 38: "h" prime left parenthesis, "x" , right parenthesish′x
38
Expression 39: negative StartFraction, 1 Over "f" left parenthesis, "x" , right parenthesis squared , EndFraction times "f" prime left parenthesis, "x" , right parenthesis−1fx2·f′x
39
Expression 40: negative StartFraction, 1 Over "f" left parenthesis, "x" , right parenthesis squared , EndFraction times "f" left parenthesis, "x" , right parenthesis left parenthesis, "b" minus "a" "f" left parenthesis, "x" , right parenthesis , right parenthesis−1fx2·fxb−afx
40
Expression 41: negative StartFraction, "b" minus "a" "f" left parenthesis, "x" , right parenthesis Over "f" left parenthesis, "x" , right parenthesis , EndFraction−b−afxfx
41
Expression 42: StartFraction, negative "b" Over "f" left parenthesis, "x" , right parenthesis , EndFraction plus StartFraction, "a" "f" left parenthesis, "x" , right parenthesis Over "f" left parenthesis, "x" , right parenthesis , EndFraction−bfx+afxfx
42
Expression 43: StartFraction, negative "b" Over "f" left parenthesis, "x" , right parenthesis , EndFraction plus "a"−bfx+a
43
Expression 44: negative "b" times "h" left parenthesis, "x" , right parenthesis plus "a"−b·hx+a
44
Hermed har vi en
45
differentialligning af typen:
46
y ' = b - a y, i hvilken a ∼ b, og
47
b ∼ a, og som er givet ved:
48
y = b / a + c e ^ ( -a x ).
49
Dermed er h ( x ) =
50
Expression 51: StartFraction, "a" Over "b" , EndFraction plus "c" Subscript, 1 , Baseline "e" Superscript, negative "b" "x" , Baselineab+c1e−bx
51
⇔
52
Expression 53: StartFraction, "a" Over "b" , EndFraction plus "c" Subscript, 1 , Baseline "e" Superscript, negative "b" "x" , Baselineab+c1e−bx
53
= 1 / f ( x ) ⇔ f ( x ) =
54
Expression 55: StartFraction, 1 Over StartNestedFraction, "a" NestedOver "b" , EndNestedFraction plus "c" Subscript, 1 , Baseline "e" Superscript, negative "b" "x" , Baseline , EndFraction1ab+c1e−bx
55
Expression 56: StartFraction, StartNestedFraction, "b" NestedOver "a" , EndNestedFraction Over StartNestedFraction, "b" NestedOver "a" , EndNestedFraction left parenthesis, StartNestedFraction, "a" NestedOver "b" , EndNestedFraction plus "c" Subscript, 1 , Baseline "e" Superscript, negative "b" "x" , Baseline , right parenthesis , EndFractionbabaab+c1e−bx
56
Expression 57: StartFraction, StartNestedFraction, "b" NestedOver "a" , EndNestedFraction Over 1 plus "c" "e" Superscript, negative "b" "x" , Baseline , EndFractionba1+ce−bx
57
Expression 58: StartFraction, "b" Over "a" , EndFraction "c" Subscript, 1 , Baseline equals "c"bac1=c
58
Expression 59: "c" Subscript, 1 , Baseline equals StartFraction, "a" "c" Over "b" , EndFractionc1=acb
59
Med konstateringen af, at
60
funktionerne i linje 57 og 33
61
er ens, er bevisførelsen slut.
62
Konstanterne a, b og c
Hide this folder from students.
63
Expression 64: "a" equals 1.2a=1.2
64
Expression 65: "b" equals 3b=3
65
Expression 66: "c" equals 0.1c=0.1
66
Animation
Hide this folder from students.
67
Expression 68: Start integral from "i" to "x" , end integral, "f" prime left parenthesis, "t" , right parenthesis "d" "t" plus "k"∫xif′tdt+k