Loading...
OX + OY + OZ = 97 / 8
Save Copy
Desmos Logo
Log In
Sign Up
Expression 16: "A" Subscript, 2 , Baseline equals "R" sine theta Subscript, 0 , Baseline
A
2
=
R
s
i
n
θ
0
16
Expression 17: "B" Subscript, 1 , Baseline equals "R" cosine left parenthesis, theta Subscript, 0 , Baseline plus "A" Subscript, "O" "B" , Baseline , right parenthesis
B
1
=
R
c
o
s
θ
0
+
A
O
B
17
Expression 18: "B" Subscript, 2 , Baseline equals "R" sine left parenthesis, theta Subscript, 0 , Baseline plus "A" Subscript, "O" "B" , Baseline , right parenthesis
B
2
=
R
s
i
n
θ
0
+
A
O
B
18
Expression 19: "C" Subscript, 1 , Baseline equals "R" cosine left parenthesis, theta Subscript, 0 , Baseline plus "A" Subscript, "O" "B" , Baseline plus "B" Subscript, "O" "C" , Baseline , right parenthesis
C
1
=
R
c
o
s
θ
0
+
A
O
B
+
B
O
C
19
Expression 20: "C" Subscript, 2 , Baseline equals "R" sine left parenthesis, theta Subscript, 0 , Baseline plus "A" Subscript, "O" "B" , Baseline plus "B" Subscript, "O" "C" , Baseline , right parenthesis
C
2
=
R
s
i
n
θ
0
+
A
O
B
+
B
O
C
20
Expression 21: "X" Subscript, 1 , Baseline equals StartFraction, "B" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFraction
X
1
=
B
1
+
C
1
2
21
Expression 22: "X" Subscript, 2 , Baseline equals StartFraction, "B" Subscript, 2 , Baseline plus "C" Subscript, 2 , Baseline Over 2 , EndFraction
X
2
=
B
2
+
C
2
2
22
Expression 23: "Y" Subscript, 1 , Baseline equals StartFraction, "A" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFraction
Y
1
=
A
1
+
C
1
2
23
Expression 24: "Y" Subscript, 2 , Baseline equals StartFraction, "A" Subscript, 2 , Baseline plus "C" Subscript, 2 , Baseline Over 2 , EndFraction
Y
2
=
A
2
+
C
2
2
24
Expression 25: "Z" Subscript, 1 , Baseline equals StartFraction, "A" Subscript, 1 , Baseline plus "B" Subscript, 1 , Baseline Over 2 , EndFraction
Z
1
=
A
1
+
B
1
2
25
Expression 26: "Z" Subscript, 2 , Baseline equals StartFraction, "A" Subscript, 2 , Baseline plus "B" Subscript, 2 , Baseline Over 2 , EndFraction
Z
2
=
A
2
+
B
2
2
26
Graphs
Graphs
Hide this folder from students.
27
Expression 28: "y" less than 25
y
<
2
5
28
Expression 29: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
29
Expression 30: polygon left parenthesis, "A" , "Z" , "O" , "Z" , "B" , "X" , "O" , "X" , "C" , "Y" , "O" , "Y" , right parenthesis
p
o
l
y
g
o
n
A
,
Z
,
O
,
Z
,
B
,
X
,
O
,
X
,
C
,
Y
,
O
,
Y
30
Points
Points
Hide this folder from students.
31
53
powered by
powered by
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy