Expression 9: "x" Subscript, 1 , Baseline equals "s" left parenthesis, "y" , "x" Subscript, 0 , Baseline , right parenthesisx1=sy,x0
9
Expression 10: "x" Subscript, 2 , Baseline equals "s" left parenthesis, "y" , "x" Subscript, 1 , Baseline , right parenthesisx2=sy,x1
10
Expression 11: "x" Subscript, 3 , Baseline equals "s" left parenthesis, "y" , "x" Subscript, 2 , Baseline , right parenthesisx3=sy,x2
11
Expression 12: "x" equals "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "s" left parenthesis, "y" , "x" Subscript, 0 , Baseline , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesis , right parenthesisx=sy,sy,sy,sy,sy,sy,sy,sy,sy,sy,sy,sy,sy,sy,sy,x0
12
trying with order2 Taylor series
Cachez ce dossier des élèves.
13
Expression 14: "S" left parenthesis, "y" , "x" Subscript, "p" , Baseline , right parenthesis equals "x" Subscript, "p" , Baseline plus StartFraction, negative "f" prime left parenthesis, "x" Subscript, "p" , Baseline , right parenthesis plus StartRoot, "D" left parenthesis, "y" , "x" Subscript, "p" , Baseline , right parenthesis , EndRoot Over "f" prime prime left parenthesis, "x" Subscript, "p" , Baseline , right parenthesis , EndFractionSy,xp=xp+−f′xp+Dy,xpf′′xp
14
Expression 15: "D" left parenthesis, "y" , "x" Subscript, "p" , Baseline , right parenthesis equals "f" prime left parenthesis, "x" Subscript, "p" , Baseline , right parenthesis squared minus 2 "f" prime prime left parenthesis, "x" Subscript, "p" , Baseline , right parenthesis times left parenthesis, "f" left parenthesis, "x" Subscript, "p" , Baseline , right parenthesis minus "y" , right parenthesisDy,xp=f′xp2−2f′′xp·fxp−y
15
Expression 16: "X" Subscript, 1 , Baseline equals "S" left parenthesis, "y" , "x" Subscript, 0 , Baseline , right parenthesisX1=Sy,x0
16
Expression 17: "X" Subscript, 2 , Baseline equals "S" left parenthesis, "y" , "X" Subscript, 1 , Baseline , right parenthesisX2=Sy,X1
17
Expression 18: "X" Subscript, 3 , Baseline equals "S" left parenthesis, "y" , "X" Subscript, 2 , Baseline , right parenthesisX3=Sy,X2
18
19
propulsé par
propulsé par
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
fonctions
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
ou
pour sauvegarder tes graphiques !
Nouveau graphique vide
Exemples
Droites : Forme avec la pente et l'ordonnée à l'origine
exemple
Droites : Forme avec la pente passant par un point donné
exemple
Droites : Passant par deux points donnés
exemple
Paraboles : Forme générale
exemple
Paraboles : Forme canonique
exemple
Paraboles : Forme générale + Tangente
exemple
Trigonométrie : Période et Amplitude
exemple
Trigonométrie : Phase
exemple
Trigonométrie : Phase et addition de fonctions
exemple
Trigonométrie : Cercle trigonométrique
exemple
Coniques : Cercle
exemple
Coniques : Parabole et Foyer
exemple
Coniques : Ellipse et Foyers
exemple
Coniques : Hyperbole
exemple
Polaire : Rosace
exemple
Polaire : Spirale logarithmique
exemple
Polaire : Limaçon
exemple
Polaire : Les coniques
exemple
Paramétrique : Introduction
exemple
Paramétrique : Cycloïde
exemple
Transformations : Translation de fonctions
exemple
Transformations : Compression et étirement de fonctions