Loading...
Desmos Vector Field
Save Copy
Desmos Logo
Log In
Sign Up
Expression 16:
16
Expression 17:
17
Cool RK4 Implementation
Cool RK4 Implementation
18
Rutta Kunda
Rutta Kunda
Hide this folder from students.
19
Takes in point and gives you derivative at that point
Takes in point and gives you derivative at that point
20
Expression 21: "F" Subscript, 0 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , right parenthesis equals "f" left parenthesis, "p" Subscript, 0 , Baseline . "x" , "p" Subscript, 0 , Baseline . "y" , right parenthesis
F
0
p
0
=
f
p
0
.
x
,
p
0
.
y
21
Desmos does not have variables, so you need to do this weird stuff to speed up RK4 math
Desmos does not have variables, so you need to do this weird stuff to speed up RK4 math
22
This uses the 3/8ths rule to remove as much error as possible while still being fairly fast.
This uses the 3/8ths rule to remove as much error as possible while still being fairly fast.
23
Expression 24: "k" left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , right parenthesis equals "k" Subscript, 1 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline left parenthesis, "F" Subscript, 0 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , right parenthesis , right parenthesis , right parenthesis
k
p
0
,
h
0
=
k
1
p
0
,
h
0
,
h
0
F
0
p
0
24
Expression 25: "k" Subscript, 1 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , "K" Subscript, 1 , Baseline , right parenthesis equals "k" Subscript, 2 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , "K" Subscript, 1 , Baseline , "h" Subscript, 0 , Baseline "F" Subscript, 0 , Baseline left parenthesis, "p" Subscript, 0 , Baseline plus StartFraction, "K" Subscript, 1 , Baseline Over 3 , EndFraction , right parenthesis , right parenthesis
k
1
p
0
,
h
0
,
K
1
=
k
2
p
0
,
h
0
,
K
1
,
h
0
F
0
p
0
+
K
1
3
25
Expression 26: "k" Subscript, 2 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , "K" Subscript, 1 , Baseline , "K" Subscript, 2 , Baseline , right parenthesis equals "k" Subscript, 3 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , "K" Subscript, 1 , Baseline , "K" Subscript, 2 , Baseline , "h" Subscript, 0 , Baseline "F" Subscript, 0 , Baseline left parenthesis, "p" Subscript, 0 , Baseline minus StartFraction, "K" Subscript, 1 , Baseline Over 3 , EndFraction plus "K" Subscript, 2 , Baseline , right parenthesis , right parenthesis
k
2
p
0
,
h
0
,
K
1
,
K
2
=
k
3
p
0
,
h
0
,
K
1
,
K
2
,
h
0
F
0
p
0
−
K
1
3
+
K
2
26
Expression 27: "k" Subscript, 3 , Baseline left parenthesis, "p" Subscript, 0 , Baseline , "h" Subscript, 0 , Baseline , "K" Subscript, 1 , Baseline , "K" Subscript, 2 , Baseline , "K" Subscript, 3 , Baseline , right parenthesis equals "p" Subscript, 0 , Baseline plus StartFraction, "K" Subscript, 1 , Baseline plus 2 "K" Subscript, 2 , Baseline plus 3 "K" Subscript, 3 , Baseline plus "h" Subscript, 0 , Baseline "F" Subscript, 0 , Baseline left parenthesis, "p" Subscript, 0 , Baseline plus "K" Subscript, 1 , Baseline minus "K" Subscript, 2 , Baseline plus "K" Subscript, 3 , Baseline , right parenthesis Over 8 , EndFraction
k
3
p
0
,
h
0
,
K
1
,
K
2
,
K
3
=
p
0
+
K
1
+
2
K
2
+
3
K
3
+
h
0
F
0
p
0
+
K
1
−
K
2
+
K
3
8
27
Solution Line
Solution Line
Hide this folder from students.
28
Vector Field Config
Vector Field Config
Hide this folder from students.
32
Vector Field
Vector Field
Hide this folder from students.
36
Expression 48:
48
49
powered by
powered by
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy