Expression 23: "M" Subscript, 2 , Baseline equals "g" left parenthesis, "M" Subscript, 1 , Baseline , right parenthesisM2=gM1
equals=
22
23
Expression 24: "N" Subscript, 1 , Baseline equals StartFraction, "A" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFractionN1=A1+C12
equals=
negative 1.7 9 9 9 9 9 9 9 9 9 8−1.79999999998
24
Expression 25: "N" Subscript, 2 , Baseline equals StartFraction, "C" Subscript, 2 , Baseline Over 2 , EndFractionN2=C22
equals=
2.3 9 9 9 9 9 9 9 9 9 92.39999999999
25
Expression 26: "m" Subscript, 3 , Baseline equals tangent left parenthesis, tan to the negative 1st power 2 plus "B" Subscript, "A" "C" , Baseline , right parenthesism3=tantan−12+BAC
Expression 28: "h" left parenthesis, "x" , right parenthesis equals "m" Subscript, 3 , Baseline left parenthesis, "x" minus "N" Subscript, 1 , Baseline , right parenthesis plus "N" Subscript, 2 , Baselinehx=m3x−N1+N2
28
Expression 29: "j" left parenthesis, "x" , right parenthesis equals StartRoot, "R" squared minus "x" squared , EndRootjx=R2−x2
29
Expression 30: "h" left parenthesis, "D" Subscript, 1 , Baseline , right parenthesis tilde "j" left parenthesis, "D" Subscript, 1 , Baseline , right parenthesishD1~jD1
30
Expression 31: "D" Subscript, 2 , Baseline equals "j" left parenthesis, "D" Subscript, 1 , Baseline , right parenthesisD2=jD1
equals=
4.4 9 8 9 4 5 0 3 0 2 94.49894503029
31
Expression 32: "y" equals "m" Subscript, 4 , Baseline left parenthesis, "x" minus "A" Subscript, 1 , Baseline , right parenthesisy=m4x−A1
32
Expression 33: "y" equals negative StartFraction, 1 Over "m" Subscript, 4 , Baseline , EndFraction left parenthesis, "x" minus "D" Subscript, 1 , Baseline , right parenthesis plus "D" Subscript, 2 , Baseliney=−1m4x−D1+D2
33
Expression 34: "m" Subscript, 4 , Baseline left parenthesis, "x" minus "A" Subscript, 1 , Baseline , right parenthesis equals negative StartFraction, 1 Over "m" Subscript, 4 , Baseline , EndFraction left parenthesis, "x" minus "D" Subscript, 1 , Baseline , right parenthesis plus "D" Subscript, 2 , Baselinem4x−A1=−1m4x−D1+D2