First we calculate the relative angle of a line between the ground point and the end of the servo arm
51
Expression 52: theta Subscript, "g" "s" "a" 1 , Baseline equals "a" left parenthesis, "x" Subscript, "s" "a" 1 , Baseline , "y" Subscript, "s" "a" 1 , Baseline , "x" Subscript, "g" , Baseline , "y" Subscript, "g" , Baseline , right parenthesisθgsa1=axsa1,ysa1,xg,yg
equals=
negative 1.3 5 9 3 2 6 6 1 8 6 8−1.35932661868
52
Now we solve for the location of the joint between links 1 and 2. First we calculate the angle between the ground connector and the end of the servo arm.
53
Expression 54: theta Subscript, 1 , Baseline equals "c" left parenthesis, "d" left parenthesis, "x" Subscript, "s" "a" 1 , Baseline , "y" Subscript, "s" "a" 1 , Baseline , "x" Subscript, "g" , Baseline , "y" Subscript, "g" , Baseline , right parenthesis , "r" Subscript, "L" 1 , Baseline , "r" Subscript, "L" 2 , Baseline , right parenthesisθ1=cdxsa1,ysa1,xg,yg,rL1,rL2
equals=
1.0 0 5 2 0 2 7 9 4 0 11.00520279401
54
Now we solve for the location of the "knee" joint.
55
Étiquette masqué left parenthesis, "x" Subscript, "k" , Baseline , "y" Subscript, "k" , Baseline , right parenthesisxk,yk
Note: There are two solutions to this problem. Which one we get depends on whether we add or subtract the angles in the following steps. Some logic is needed to distinguish which solution to use in certain situations.
57
Expression 58: "x" Subscript, "k" , Baseline equals "x" Subscript, "g" , Baseline plus "r" Subscript, "L" 1 , Baseline cosine left parenthesis, theta Subscript, "g" "s" "a" 1 , Baseline minus theta Subscript, 1 , Baseline , right parenthesisxk=xg+rL1cosθgsa1−θ1
Expression 59: "y" Subscript, "k" , Baseline equals "y" Subscript, "g" , Baseline plus "r" Subscript, "L" 1 , Baseline sine left parenthesis, theta Subscript, "g" "s" "a" 1 , Baseline minus theta Subscript, 1 , Baseline , right parenthesisyk=yg+rL1sinθgsa1−θ1
equals=
0.0 7 3 7 7 5 5 4 6 0 7 3 40.0737755460734
59
Expression 60: left parenthesis, left parenthesis, 1 minus "t" , right parenthesis "x" Subscript, "s" "a" 1 , Baseline plus "t" "x" Subscript, "k" , Baseline , left parenthesis, 1 minus "t" , right parenthesis "y" Subscript, "s" "a" 1 , Baseline plus "t" "y" Subscript, "k" , Baseline , right parenthesis1−txsa1+txk,1−tysa1+tyk
00
Minimum du domaine t:
less than or equal to "t" less than or equal to≤t≤
11
Maximum du domaine t:
60
Expression 61: left parenthesis, left parenthesis, 1 minus "t" , right parenthesis "x" Subscript, "g" , Baseline plus "t" "x" Subscript, "k" , Baseline , left parenthesis, 1 minus "t" , right parenthesis "y" Subscript, "g" , Baseline plus "t" "y" Subscript, "k" , Baseline , right parenthesis1−txg+txk,1−tyg+tyk
00
Minimum du domaine t:
less than or equal to "t" less than or equal to≤t≤
Maximum du domaine t: 11
61
Calculating Second Knee Joint Location
Cachez ce dossier des élèves.
62
Calculating Ankle Joint Location
Cachez ce dossier des élèves.
71
81
propulsé par
propulsé par
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
fonctions
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
ou
pour sauvegarder tes graphiques !
Nouveau graphique vide
Exemples
Droites : Forme avec la pente et l'ordonnée à l'origine
exemple
Droites : Forme avec la pente passant par un point donné
exemple
Droites : Passant par deux points donnés
exemple
Paraboles : Forme générale
exemple
Paraboles : Forme canonique
exemple
Paraboles : Forme générale + Tangente
exemple
Trigonométrie : Période et Amplitude
exemple
Trigonométrie : Phase
exemple
Trigonométrie : Phase et addition de fonctions
exemple
Trigonométrie : Cercle trigonométrique
exemple
Coniques : Cercle
exemple
Coniques : Parabole et Foyer
exemple
Coniques : Ellipse et Foyers
exemple
Coniques : Hyperbole
exemple
Polaire : Rosace
exemple
Polaire : Spirale logarithmique
exemple
Polaire : Limaçon
exemple
Polaire : Les coniques
exemple
Paramétrique : Introduction
exemple
Paramétrique : Cycloïde
exemple
Transformations : Translation de fonctions
exemple
Transformations : Compression et étirement de fonctions