Expression 2: "p" left parenthesis, 101 , right parenthesisp101
equals=
0.1 1 8 2 2 5 8 2 6 9 9 60.118225826996
2
`p(n) = \frac{(-1)^n}{2 \cdot 6^{2n}} \sum_{j= \frac{n}{2}}^{n-k}\sum_{a=0}^{n-j} \binom{n-j}{a}\binom{n-j-a}{a}\binom{j}{n-j} \frac{n+j+1}{2j-n+1} 4^{n-a} (-9)^{j}` left parenthesis, 2 , 2 , right parenthesis2,2
Label:
3
4
powered by
powered by
"p" ( "n" ) equals StartFraction, ( negative 1 ) Superscript, "n" , Baseline Over 2 times 6 Superscript, 2 "n" , Baseline , EndFraction Start sum from "j" equals StartFraction, "n" Over 2 , EndFraction to "n" minus "k" , end sum, Start sum from "a" equals 0 to "n" minus "j" , end sum, StartBinomial, "n" minus "j" Choose "a" , EndBinomial StartBinomial, "n" minus "j" minus "a" Choose "a" , EndBinomial StartBinomial, "j" Choose "n" minus "j" , EndBinomial StartFraction, "n" plus "j" plus 1 Over 2 "j" minus "n" plus 1 , EndFraction 4 Superscript, "n" minus "a" , Baseline ( negative 9 ) Superscript, "j" , Baselinep(n)=(−1)n2·62nn−k∑j=n2n−j∑a=0n−jan−j−aajn−jn+j+12j−n+14n−a(−9)j