Uttryck 20: "y" equals negative left parenthesis, "x" plus 5 , right parenthesis cubed plus 7.1 left brace, negative 5.8 less than or equal to "x" less than or equal to negative 5.2 5 , right bracey=−x+53+7.1−5.8≤x≤−5.25
20
Uttryck 21: "y" equals negative left parenthesis, "x" plus 4.5 , right parenthesis cubed plus 7.1 left brace, negative 5.4 less than or equal to "x" less than or equal to negative 5 , right bracey=−x+4.53+7.1−5.4≤x≤−5
21
Uttryck 22: "y" equals negative left parenthesis, "x" plus 4 , right parenthesis cubed plus 7.1 left brace, negative 4.9 7 less than or equal to "x" less than or equal to negative 4.6 3 , right bracey=−x+43+7.1−4.97≤x≤−4.63
22
Uttryck 23: "y" equals negative left parenthesis, "x" plus 3.5 , right parenthesis cubed plus 7.1 left brace, negative 4.5 2 less than or equal to "x" less than or equal to negative 4.2 , right bracey=−x+3.53+7.1−4.52≤x≤−4.2
23
Uttryck 24: "y" equals negative left parenthesis, "x" plus 3 , right parenthesis cubed plus 7.1 left brace, negative 4.0 5 less than or equal to "x" less than or equal to negative 3.7 5 , right bracey=−x+33+7.1−4.05≤x≤−3.75
24
Uttryck 25: "y" equals negative left parenthesis, "x" plus 2.5 , right parenthesis cubed plus 7.1 left brace, negative 3.5 5 less than or equal to "x" less than or equal to negative 3.2 5 , right bracey=−x+2.53+7.1−3.55≤x≤−3.25
25
Uttryck 26: "y" equals negative left parenthesis, "x" plus 2 , right parenthesis cubed plus 7.1 left brace, negative 3.0 5 less than or equal to "x" less than or equal to negative 2.7 , right bracey=−x+23+7.1−3.05≤x≤−2.7
26
Uttryck 27: "y" equals negative left parenthesis, "x" plus 1.5 , right parenthesis cubed plus 7.1 left brace, negative 2.5 less than or equal to "x" less than or equal to negative 1.9 8 , right bracey=−x+1.53+7.1−2.5≤x≤−1.98
27
Uttryck 28: "y" equals negative left parenthesis, "x" plus 1 , right parenthesis cubed plus 6.8 9 left brace, negative 2 less than or equal to "x" less than or equal to negative 1.5 , right bracey=−x+13+6.89−2≤x≤−1.5
28
Uttryck 29: "y" equals left parenthesis, StartFraction, "x" Over 0.8 , EndFraction minus 4.4 , right parenthesis squared plus 6 left brace, 2.5 8 less than or equal to "x" less than or equal to 4.4 5 , right bracey=x0.8−4.42+62.58≤x≤4.45
29
Uttryck 30: "y" equals left parenthesis, negative StartFraction, "x" Over 0.8 , EndFraction minus 4.4 , right parenthesis squared plus 6 left brace, negative 4.4 5 less than or equal to "x" less than or equal to negative 2.5 8 , right bracey=−x0.8−4.42+6−4.45≤x≤−2.58
30
Uttryck 31: "y" equals left parenthesis, StartFraction, "x" Over 0.3 , EndFraction minus 11.7 , right parenthesis squared plus 6.5 left brace, 3.3 5 less than or equal to "x" less than or equal to 3.6 7 , right bracey=x0.3−11.72+6.53.35≤x≤3.67
31
Uttryck 32: "y" equals negative left parenthesis, StartFraction, "x" Over 0.3 , EndFraction minus 11.7 , right parenthesis squared plus 7.0 9 left brace, 3.3 5 less than or equal to "x" less than or equal to 3.6 7 , right bracey=−x0.3−11.72+7.093.35≤x≤3.67
32
Uttryck 33: "y" equals negative left parenthesis, StartFraction, "x" Over 0.3 , EndFraction plus 11.7 , right parenthesis squared plus 7.0 9 left brace, negative 3.6 7 less than or equal to "x" less than or equal to negative 3.3 5 , right bracey=−x0.3+11.72+7.09−3.67≤x≤−3.35
33
Uttryck 34: "y" equals left parenthesis, StartFraction, "x" Over 0.3 , EndFraction plus 11.7 , right parenthesis squared plus 6.5 left brace, negative 3.6 7 less than or equal to "x" less than or equal to negative 3.3 5 , right bracey=x0.3+11.72+6.5−3.67≤x≤−3.35
34
Uttryck 35: "y" equals StartFraction, "x" Over 2.5 , EndFraction squared minus 3 left brace, negative 7 less than or equal to "x" less than or equal to 7 , right bracey=x2.52−3−7≤x≤7
35
Uttryck 36: "y" equals negative StartFraction, 1 Over 13 , EndFraction "x" squared plus 15 left brace, negative 5.6 2 less than or equal to "x" less than or equal to 5.6 2 , right bracey=−113x2+15−5.62≤x≤5.62
36
Uttryck 37: "y" equals StartRoot, StartFraction, "x" Over 0.0 1 , EndFraction plus 720 , EndRoot left brace, negative 6.9 7 less than or equal to "x" less than or equal to negative 5.6 2 , right bracey=x0.01+720−6.97≤x≤−5.62
37
Uttryck 38: "y" equals StartRoot, negative StartFraction, "x" Over 0.0 1 , EndFraction plus 720 , EndRoot left brace, 5.6 2 less than or equal to "x" less than or equal to 6.9 7 , right bracey=−x0.01+7205.62≤x≤6.97
38
Uttryck 39: "y" equals left parenthesis, StartFraction, "x" Over 4 , EndFraction plus 0.1 8 , right parenthesis cubed positive 14.5y=x4+0.183+14.5
39
40
driven av
driven av
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funktioner
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
eller
för att spara dina grafer!
Skapa en ny graf
Exempel
Linjer: Linjära funktioner
exempel
Linjer: Enpunktsformeln
exempel
Linjer: Tvåpunktsformeln
exempel
Parabler: Standardform
exempel
Parabler: Vertexform
exempel
Parabler: Standardform och tangens
exempel
Trigonometri: Våglängd och amplitud
exempel
Trigonometri: Fas
exempel
Trigonometri: Interferens
exempel
Trigonometri: Enhetscirkeln
exempel
Kägelsnitt: Cirkel
exempel
Kägelsnitt: Parabel och fokus
exempel
Kägelsnitt: Ellips med fokus
exempel
Kägelsnitt: Hyperbel
exempel
Polära ekvationer: Ros
exempel
Polära ekvationer: Logaritmisk spiral
exempel
Polära ekvationer: Limacon
exempel
Polära ekvationer: Kägelsnitt
exempel
Parameterform: Introduktion
exempel
Parameterform: Cykloid
exempel
Transformation: Avbildning av en funktion
exempel
Transformation: Förändra skalan på en funktion
exempel
Transformation: Invers av en funktion
exempel
Statistik: Linjär regression
exempel
Statistik: Anscombs kvartett
exempel
Statistik: Polynom av 4:e grad
exempel
Listor: Sinuskurvor
exempel
Listor: Stickandet av kurvor
exempel
Listor: Rita en graf från en lista med punkter
exempel
Infinitesimalkalkyl: Derivata
exempel
Infinitesimalkalkyl: Sekantlinje
exempel
Infinitesimalkalkyl: Tangentlinje
exempel
Infinitesimalkalkyl: Taylorutveckling av sin(x)
exempel
Infinitesimalkalkyl: Integraler
exempel
Infinitesimalkalkyl: Integraler med justerbara gränser