Loading...
Shaded Fraction = 1 / 2 = 0.5
Save Copy
Desmos Logo
Log In
Sign Up
Expression 15: "C" Subscript, 1 , Baseline equals "B" Subscript, 1 , Baseline plus "w"
C
1
=
B
1
+
w
equals
=
10.0 4 0 8 9 4 9 6 7 8
1
0
.
0
4
0
8
9
4
9
6
7
8
15
Expression 16: "C" Subscript, 2 , Baseline equals "h"
C
2
=
h
equals
=
6.4 5 0 1 8 1 0 8 9 1 2
6
.
4
5
0
1
8
1
0
8
9
1
2
16
Expression 17: "D" Subscript, 1 , Baseline equals "w"
D
1
=
w
equals
=
7.9 6 5
7
.
9
6
5
17
Expression 18: "D" Subscript, 2 , Baseline equals StartRoot, 0 , EndRoot
D
2
=
0
equals
=
0
0
18
Expression 19: "E" Subscript, 1 , Baseline equals "A" Subscript, 1 , Baseline plus "S" Subscript, "F" , Baseline left parenthesis, "B" Subscript, 1 , Baseline minus "A" Subscript, 1 , Baseline , right parenthesis
E
1
=
A
1
+
S
F
B
1
−
A
1
equals
=
1.3 8 0 4 7 0 1 5 3 6 1
1
.
3
8
0
4
7
0
1
5
3
6
1
19
Expression 20: "E" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline plus "S" Subscript, "F" , Baseline left parenthesis, "B" Subscript, 2 , Baseline minus "A" Subscript, 2 , Baseline , right parenthesis
E
2
=
A
2
+
S
F
B
2
−
A
2
equals
=
4.2 8 9 3 7 0 4 2 4 2 7
4
.
2
8
9
3
7
0
4
2
4
2
7
20
Expression 21: "F" Subscript, 1 , Baseline equals "B" Subscript, 1 , Baseline plus left parenthesis, 1 minus "S" Subscript, "F" , Baseline , right parenthesis left parenthesis, "C" Subscript, 1 , Baseline minus "B" Subscript, 1 , Baseline , right parenthesis
F
1
=
B
1
+
1
−
S
F
C
1
−
B
1
equals
=
4.7 4 4 1 6 9 9 6 7 8 4
4
.
7
4
4
1
6
9
9
6
7
8
4
21
Expression 22: "F" Subscript, 2 , Baseline equals "B" Subscript, 2 , Baseline
F
2
=
B
2
equals
=
6.4 5 0 1 8 1 0 8 9 1 2
6
.
4
5
0
1
8
1
0
8
9
1
2
22
Expression 23: "G" Subscript, 1 , Baseline equals "E" Subscript, 1 , Baseline plus "w"
G
1
=
E
1
+
w
equals
=
9.3 4 5 4 7 0 1 5 3 6 1
9
.
3
4
5
4
7
0
1
5
3
6
1
23
Expression 24: "G" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline
G
2
=
E
2
equals
=
4.2 8 9 3 7 0 4 2 4 2 7
4
.
2
8
9
3
7
0
4
2
4
2
7
24
Graphs
Graphs
Hide this folder from students.
25
Expression 26: polygon left parenthesis, "D" , "E" , "F" , "G" , right parenthesis
p
o
l
y
g
o
n
D
,
E
,
F
,
G
26
Expression 27: polygon left parenthesis, "A" , "B" , "C" , "G" , "F" , "E" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
G
,
F
,
E
,
D
27
Expression 28: polygon left parenthesis, "D" , "G" , right parenthesis
p
o
l
y
g
o
n
D
,
G
28
Expression 29: polygon left parenthesis, "E" , "G" , right parenthesis
p
o
l
y
g
o
n
E
,
G
29
Points
Points
Hide this folder from students.
30
41
powered by
powered by
A
B
C
D
E
G
F
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy