Look at the parametrically defined function below and compare it to the previous one. Also examine the Table below.
18
Ekspresi 19: left parenthesis, "b" "t" plus 2 , 576 minus 16 left parenthesis, "b" "t" , right parenthesis squared , right parenthesisbt+2,576−16bt2
domain t Minimal: 00
less than or equal to "t" less than or equal to≤t≤
domain t Maksimal: 11
19
"x"x
"y" equals 576 minus 16 left parenthesis, "x" minus 2 , right parenthesis squaredy=576−16x−22
22
r1c2:
r1c3:
33
r2c2:
r2c3:
44
r3c2:
r3c3:
55
r4c2:
r4c3:
66
r5c2:
r5c3:
r6c2:
r6c3:
20
NOW FOR THE STUDENT INVESTIGATION AND QUESTIONS...
21
1. Describe the relationship between the 2 graphs. Be specific.
22
2. Explain the effect of the "+2" in "bt+2" graphically. Why is the domain for the 2nd function 2 <=x<=6?
23
3. Explain algebraically how "576-16(bt)^2" was transformed to 576-16(x-2)^2.
24
4. Fill in the missing coordinates for each graph: Green (___,512); Orange (___,512)
25
5. 'a' and 'b' were both set to 4. What value do we need for 'a' and 'b' in order for the graphs to terminate on the x-axis? Try it! Adjust as needed.
26
7. PLAY the slider for 'a' by pressing the PLAY button to the left. Describe what happens. Now do the same for 'b'. Explain why the curves are repeatedly being traced and 'erased'.
27
28
dipersembahkan oleh
dipersembahkan oleh
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
fungsi
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
atau
untuk menyimpan grafikmu!
Grafik Kosong Baru
Contoh
Garis: Bentuk Perpotongan Kemiringan
contoh
Garis: Bentuk Titik Kemiringan
contoh
Garis: Bentuk Dua Titik
contoh
Parabola: Bentuk Standar
contoh
Parabola: Bentuk Verteks
contoh
Parabola: Bentuk Standar + Tangen
contoh
Trigonometri: Periode dan Amplitudo
contoh
Trigonometri: Fase
contoh
Trigonometri: Interferensi Gelombang
contoh
Trigonometri: Lingkaran Satuan
contoh
Irisan Kerucut: Lingkaran
contoh
Irisan Kerucut: Parabola dan Fokus
contoh
Irisan Kerucut: Elips dengan Fokus
contoh
Irisan Kerucut: Hiperbola
contoh
Kutub: Mawar
contoh
Kutub: Spiral Logaritma
contoh
Kutub: Limacon
contoh
Kutub: Irisan Kerucut
contoh
Parametrik: Pengantar
contoh
Parametrik: Sikloid
contoh
Transformasi: Menafsirkan Fungsi
contoh
Transformasi: Mengubah Skala Fungsi
contoh
Transformasi: Invers Fungsi
contoh
Statistik: Regresi Linear
contoh
Statistik: Kuartet Anscombe
contoh
Statistik: Polinomial Orde 4
contoh
Daftar: Keluarga Kurva Sinus
contoh
Daftar: Jalinan Kurva
contoh
Daftar: Menggambar Daftar Titik
contoh
Kalkulus: Turunan
contoh
Kalkulus: Garis Sekan
contoh
Kalkulus: Garis Tangen
contoh
Kalkulus: Deret Taylor sin(x)
contoh
Kalkulus: Integral
contoh
Kalkulus: Integral dengan batas yang dapat disesuaikan