Loading...
LN = 2.2360679775
Save Copy
Desmos Logo
Log In
Sign Up
Expression 16: "C" Subscript, 1 , Baseline equals "R" cosine left parenthesis, 90 minus 120 , right parenthesis
C
1
=
R
c
o
s
9
0
−
1
2
0
equals
=
1
1
16
Expression 17: "C" Subscript, 2 , Baseline equals "R" sine left parenthesis, 90 minus 120 , right parenthesis
C
2
=
R
s
i
n
9
0
−
1
2
0
equals
=
negative 0.5 7 7 3 5 0 2 6 9 1 9
−
0
.
5
7
7
3
5
0
2
6
9
1
9
17
Expression 18: "D" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline
D
1
=
O
1
equals
=
0
0
18
Expression 19: "D" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline
D
2
=
C
2
equals
=
negative 0.5 7 7 3 5 0 2 6 9 1 9
−
0
.
5
7
7
3
5
0
2
6
9
1
9
19
Expression 20: "L" Subscript, 1 , Baseline equals negative "N" Subscript, 1 , Baseline
L
1
=
−
N
1
equals
=
negative 1.1 1 8 0 3 3 9 8 8 7 5
−
1
.
1
1
8
0
3
3
9
8
8
7
5
20
Expression 21: "L" Subscript, 2 , Baseline equals "N" Subscript, 2 , Baseline
L
2
=
N
2
equals
=
0.2 8 8 6 7 5 1 3 4 5 9 5
0
.
2
8
8
6
7
5
1
3
4
5
9
5
21
Expression 22: "M" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline
M
1
=
O
1
equals
=
0
0
22
Expression 23: "M" Subscript, 2 , Baseline equals "N" Subscript, 2 , Baseline
M
2
=
N
2
equals
=
0.2 8 8 6 7 5 1 3 4 5 9 5
0
.
2
8
8
6
7
5
1
3
4
5
9
5
23
Graphs
Graphs
Hide this folder from students.
24
Expression 25: "y" less than 25
y
<
2
5
25
Expression 26: polygon left parenthesis, "L" , "N" , right parenthesis
p
o
l
y
g
o
n
L
,
N
26
Expression 27: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
27
Expression 28: polygon left parenthesis, "A" , "D" , "A" , "B" , "C" , right parenthesis
p
o
l
y
g
o
n
A
,
D
,
A
,
B
,
C
28
Expression 29: left parenthesis, "D" Subscript, 1 , Baseline plus 0.1 5 "t" cos 45 , "D" Subscript, 2 , Baseline plus 0.1 5sin 45 , right parenthesis
D
1
+
0
.
1
5
t
c
o
s
4
5
,
D
2
+
0
.
1
5
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
29
Expression 30: left parenthesis, "D" Subscript, 1 , Baseline plus 0.1 5cos 45 , "D" Subscript, 2 , Baseline plus 0.1 5 "t" sin 45 , right parenthesis
D
1
+
0
.
1
5
c
o
s
4
5
,
D
2
+
0
.
1
5
t
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
30
Points
Points
Hide this folder from students.
31
47
powered by
powered by
O
A
B
C
D
L
M
N
LN and BC : Parallel Segments
AB = BC = AC = 2
AM = DM
LN = ?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy