Expresión 14: left parenthesis, "b" , "f" left parenthesis, "b" , right parenthesis , right parenthesisb,fb
14
Expresión 15: left parenthesis, StartFraction, "n" Over "b" minus "a" , EndFraction minus 4 , 3 , right parenthesisnb−a−4,3
15
Expresión 16: left parenthesis, 2 , 4 , right parenthesis2,4
16
Expresión 17: left parenthesis, 2 , 5 , right parenthesis2,5
17
Expresión 18: left parenthesis, 2 , 6 , right parenthesis2,6
18
Expresión 19: "f" left parenthesis, "x" , right parenthesis equals sine left parenthesis, "x" , right parenthesis plus sine left parenthesis, 2 "x" , right parenthesisfx=sinx+sin2x
19
The exact length of the curve
20
Expresión 21: "A" Subscript, "e" "x" "a" "c" "t" , Baseline equals Start integral from "a" to "b" , end integral, StartRoot, 1 plus "f" prime left parenthesis, "x" , right parenthesis squared , EndRoot "d" "x"Aexact=∫ba1+f′x2dx
21
The sum of all the lines we drew. Roughly, the more lines, the more precise
22
Expresión 23: "A" Subscript, "p" "r" "o" "x" , Baseline equals total left parenthesis, StartRoot, left parenthesis, "p" minus left parenthesis, "p" plus "d" Subscript, "x" , Baseline , right parenthesis , right parenthesis squared plus left parenthesis, "f" left parenthesis, "p" , right parenthesis minus "f" left parenthesis, "p" plus "d" Subscript, "x" , Baseline , right parenthesis , right parenthesis squared , EndRoot , right parenthesisAprox=totalp−p+dx2+fp−fp+dx2