The limit does not exist because as x approaches -4 from the left the limit is 0 but as x approaches -4 from the right the limit is 2. You cannot have two answers, therefore the limit does not exist.
14
Wyrażenie 15: left brace, "x" less than negative 4 : sin left parenthesis, "x" plus 4 , right parenthesis , "x" greater than or equal to negative 4 : negative 1 half "x" , right bracex<−4:sinx+4,x≥−4:−12x
15
Does the following function have a limit at a=0? If so, what is it?
16
The limit of f(x) as x approaches 0 is undefined but with estimations the limit is 1.
17
Wyrażenie 18: StartFraction, sin left parenthesis, "x" , right parenthesis Over "x" , EndFractionsinxx
18
Does the following function have a limit at a=0? If so, what is it?
19
The limit of f(x) as x approaches 0 is undefined but with estimations the limit can be approximated to be 1.
20
Wyrażenie 21: sine left parenthesis, StartFraction, 1 Over "x" , EndFraction , right parenthesissin1x
21
The next function has a constant k in it that you can change with the slider. Find a value for k so that the limit of the function exists at every point. Answer: k=
22
k=2
23
Wyrażenie 24: "f" left parenthesis, "x" , right parenthesis equals StartFraction, "x" squared minus "x" minus 2 Over "x" minus "k" , EndFractionfx=x2−x−2x−k
24
Wyrażenie 25: "k" equals 3k=3
negative 10−10
1010
25
Why does this value for k work? Explain what you see geometrically, and if possible explain algebraically. Answer:
26
The value of k=2 works because 2 is an intercept. When approaching from both the left ad the right the limit always goes to 0.
27
When you are done, save this graph and share it with me (dmarshall@nmhschool.org).
28
29
obsługiwane przez
obsługiwane przez
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funkcje
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
lub
aby zapisać wykresy!
Nowy pusty wykres
Przykłady
Prosta: Równanie kierunkowe
przykład
Prosta: Równanie prostej o znanym współczynniku kierunkowym przechodzącej przez dany punkt
przykład
Prosta: Równanie prostej przechodzącej przez dwa punkty
przykład
Parabola: Postać ogólna
przykład
Parabola: Postać kanoniczna
przykład
Parabola: Postać ogólna + styczna
przykład
Trygonometria: Okres i amplituda
przykład
Trygonometria: Faza
przykład
Trygonometria: Interferencja
przykład
Trygonometria: Okrąg jednostkowy
przykład
Krzywe stożkowe: okrąg
przykład
Krzywe stożkowe: parabola i ognisko
przykład
Krzywe stożkowe: elipsa z ogniskami
przykład
Krzywe stożkowe: hiperbola
przykład
Współrzędne biegunowe: Róża
przykład
Współrzędne biegunowe: Spirala logarytmiczna
przykład
Współrzędne biegunowe: Ślimak Pascala
przykład
Współrzędne biegunowe: krzywe stożkowe
przykład
Równania parametryczne: Wstęp
przykład
Równania parametryczne: Cykloida
przykład
Transformacje: przesunięcie funkcji
przykład
Transformacje: skalowanie funkcji
przykład
Transformacje: odwrotność funkcji
przykład
Statystyka: Regresja liniowa
przykład
Statystyka: Kwartet Anscombe’a
przykład
Statystyka: Wielomian czwartego stopnia
przykład
Listy: Rodzina sinusoid
przykład
Listy: Wyszywanki matematyczne
przykład
Listy: Wykreślanie listy punktów
przykład
Rachunek różniczkowy: Pochodne
przykład
Równania różniczkowe: Sieczna
przykład
Równania różniczkowe: Styczna
przykład
Równania różniczkowe: Rozwinięcie sin(x) w szereg Taylora
przykład
Równania różniczkowe: Całki
przykład
Równania różniczkowe: Całka oznaczona po regulowanym przedziale