Loading...
Radius R = 1.61803398875
Save Copy
Desmos Logo
Log In
Sign Up
Expression 14: "P" Subscript, 1 , Baseline equals "R" cosine "P" Subscript, "O" "T" , Baseline
P
1
=
R
c
o
s
P
O
T
equals
=
1.5 7 2 3 0 2 7 5 5 5 1
1
.
5
7
2
3
0
2
7
5
5
5
1
14
Expression 15: "P" Subscript, 2 , Baseline equals "R" sine "P" Subscript, "O" "T" , Baseline
P
2
=
R
s
i
n
P
O
T
equals
=
0.3 8 1 9 6 6 0 1 1 2 5
0
.
3
8
1
9
6
6
0
1
1
2
5
15
Expression 16: "T" Subscript, 1 , Baseline equals "R"
T
1
=
R
equals
=
1.6 1 8 0 3 3 9 8 8 7 5
1
.
6
1
8
0
3
3
9
8
8
7
5
16
Expression 17: "T" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
T
2
=
O
2
equals
=
0
0
17
Graphs
Graphs
Hide this folder from students.
18
Expression 19: "y" less than 130
y
<
1
3
0
19
Expression 20: left parenthesis, "L" Subscript, 1 , Baseline , "L" Subscript, 2 , Baseline minus "t" "P" Subscript, 2 , Baseline , right parenthesis
L
1
,
L
2
−
t
P
2
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
20
Expression 21: left parenthesis, "M" Subscript, 1 , Baseline , "M" Subscript, 2 , Baseline plus "t" 2 , right parenthesis
M
1
,
M
2
+
t
2
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
21
Expression 22: polygon left parenthesis, "O" , "P" , right parenthesis
p
o
l
y
g
o
n
O
,
P
22
Expression 23: left parenthesis, "O" Subscript, 1 , Baseline , "O" Subscript, 2 , Baseline minus "t" "P" Subscript, 2 , Baseline , right parenthesis
O
1
,
O
2
−
t
P
2
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
23
Expression 24: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
24
Expression 25: left parenthesis, "R" cos "t" , "R" sin 0 , right parenthesis
R
c
o
s
t
,
R
s
i
n
0
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
25
Expression 26: left parenthesis, "M" Subscript, 1 , Baseline plus "R" Subscript, 2 , Baseline cos "t" , "M" Subscript, 2 , Baseline plus "R" Subscript, 2 , Baseline sin "t" , right parenthesis
M
1
+
R
2
c
o
s
t
,
M
2
+
R
2
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
26
Points
Points
Hide this folder from students.
27
38
powered by
powered by
O
M
L
P
T
2
R = ?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy