Loading...
Irrational Numbers
사본 저장
Desmos 로고
로그인
회원가입
Even + Even = Even
Even + Even = Even
16
Odd + Odd = Even
Odd + Odd = Even
17
If the side is even, then its square has an area that is even.
If the side is even, then its square has an area that is even.
18
If the side is odd, then its square has an area that is odd.
If the side is odd, then its square has an area that is odd.
19
One thing that was discovered, was that if we add the area of the legs squared. It is always even.
One thing that was discovered, was that if we add the area of the legs squared. It is always even.
20
If we had a solution then the hypotenuse can't be odd, because Odd * Odd = Odd. That would contradict the fact that the area must always be even.
If we had a solution then the hypotenuse can't be odd, because Odd * Odd = Odd. That would contradict the fact that the area must always be even.
21
수식 22: "V" equals 0
V
=
0
0
0
1
1
22
Since our solution needs to have one side that is odd and the hypotenuse is even. It must be the legs.
Since our solution needs to have one side that is odd and the hypotenuse is even. It must be the legs.
23
We also need to remember that half of the area of the hypotenuse squared is the area of the leg squared.
We also need to remember that half of the area of the hypotenuse squared is the area of the leg squared.
24
Dividing it in half. We know that one side is at least a whole number, it may be even or odd. But the other side is definitely even.
Dividing it in half. We know that one side is at least a whole number, it may be even or odd. But the other side is definitely even.
25
However, this means that the area of the leg squared is even. Which means that the leg is even. However we just proved it had to be odd.
However, this means that the area of the leg squared is even. Which means that the leg is even. However we just proved it had to be odd.
26
Thus we can say that this triangle does not exist, because we found a contradiction.
Thus we can say that this triangle does not exist, because we found a contradiction.
27
Geometry
Geometry
학생에게 이 폴더를 숨깁니다.
28
Sliders
Sliders
학생에게 이 폴더를 숨깁니다.
34
Labels
Labels
학생에게 이 폴더를 숨깁니다.
38
Images
Images
학생에게 이 폴더를 숨깁니다.
47
260px-Pythagorean.svg.png
260px-Pythagorean.svg.png
이미지 변경
중심:
center: left parenthesis, negative StartFraction, "s" Over 2 , EndFraction , negative StartFraction, "s" Over 2 , EndFraction , right parenthesis
−
s
2
,
−
s
2
너비:
width: "s"
s
각:
angle: 0
0
높이:
height: "s"
s
불투명도:
opacity: 1
1
48
49
powered by
powered by
Odd
Odd
Odd + Odd = Even
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
함수
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
로그인
또는
회원가입
그래프를 저장하세요!
새 그래프
예시
선: 기울기와 절편으로 나타내는 방정식
예시
선: 한 점과 기울기를 이용하는 방정식
예시
선: 두 점을 지나는 직선의 방정식
예시
포물선: 표준형
예시
포물선: 꼭지점 형식
예시
포물선: 표준형과 탄젠트
예시
삼각법: 진폭과 주기
예시
삼각법: 위상
예시
삼각법: 파동 간섭
예시
삼각법: 단위 원
예시
원추곡선: 원
예시
원추곡선: 포물선과 초첨
예시
원추곡선: 초점이 있는 타원
예시
원추곡선: 쌍곡선
예시
극: 장미
예시
극: 로그 나선
예시
극: 리마송
예시
극: 원추곡선
예시
매개변수: 소개
예시
매개변수: 사이클로이드
예시
변환: 함수 평행이동
예시
변환: 함수 확대 및 축소
예시
변환: 역함수
예시
통계: 선형 회귀
예시
통계: 앤스컴 콰르텟
예시
통계: 4차 다항식
예시
리스트: 사인 곡선족
예시
리스트: 스트링 아트
예시
리스트: 점 찍기
예시
미적분: 도함수
예시
미적분: 할선
예시
미적분: 접선
예시
미적분: sin(x)의 테일러 전개
예시
미적분: 적분
예시
미적분: 경계 조정 가능한 적분
예시
미적분: 미적분학의 기본 정리
예시
서비스 약관
|
개인정보처리방침