Loading...
CD = X = 38.1837661841
Save Copy
Desmos Logo
Log In
Sign Up
Expression 14: "B" Subscript, 1 , Baseline equals negative "B" Subscript, "T" , Baseline equals negative 9
B
1
=
−
B
T
equals
=
negative 9
−
9
14
Expression 15: "B" Subscript, 2 , Baseline equals negative "R" equals negative 27
B
2
=
−
R
equals
=
negative 27
−
2
7
15
Expression 16: "C" Subscript, 1 , Baseline equals StartFraction, "R" Over "B" Subscript, "O" , Baseline , EndFraction "B" Subscript, 1 , Baseline equals negative 8.5 3 8 1 4 9 6 8 2 4 5
C
1
=
R
B
O
B
1
equals
=
negative 8.5 3 8 1 4 9 6 8 2 4 5
−
8
.
5
3
8
1
4
9
6
8
2
4
5
16
Expression 17: "C" Subscript, 2 , Baseline equals StartFraction, "R" Over "B" Subscript, "O" , Baseline , EndFraction "B" Subscript, 2 , Baseline equals negative 25.6 1 4 4 4 9 0 4 7 4
C
2
=
R
B
O
B
2
equals
=
negative 25.6 1 4 4 4 9 0 4 7 4
−
2
5
.
6
1
4
4
4
9
0
4
7
4
17
Expression 18: "D" Subscript, 1 , Baseline equals StartFraction, "R" Over "A" Subscript, "O" , Baseline , EndFraction "A" Subscript, 1 , Baseline equals 25.6 1 4 4 4 9 0 4 7 4
D
1
=
R
A
O
A
1
equals
=
25.6 1 4 4 4 9 0 4 7 4
2
5
.
6
1
4
4
4
9
0
4
7
4
18
Expression 19: "D" Subscript, 2 , Baseline equals StartFraction, "R" Over "A" Subscript, "O" , Baseline , EndFraction "A" Subscript, 2 , Baseline equals negative 8.5 3 8 1 4 9 6 8 2 4 5
D
2
=
R
A
O
A
2
equals
=
negative 8.5 3 8 1 4 9 6 8 2 4 5
−
8
.
5
3
8
1
4
9
6
8
2
4
5
19
Expression 20: "T" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline equals 0
T
1
=
O
1
equals
=
0
0
20
Expression 21: "T" Subscript, 2 , Baseline equals negative "R" equals negative 27
T
2
=
−
R
equals
=
negative 27
−
2
7
21
Graphs
Graphs
Hide this folder from students.
22
Expression 23: polygon left parenthesis, "A" , "B" , "C" , "D" , right parenthesis Has graph.
p
o
l
y
g
o
n
A
,
B
,
C
,
D
23
Expression 24: polygon left parenthesis, "C" , "D" , "O" , right parenthesis Has graph.
p
o
l
y
g
o
n
C
,
D
,
O
24
Expression 25: polygon left parenthesis, "A" , "B" , "O" , right parenthesis Has graph.
p
o
l
y
g
o
n
A
,
B
,
O
25
Expression 26: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis Has graph.
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
26
Expression 27: polygon left parenthesis, "C" , "D" , right parenthesis Has graph.
p
o
l
y
g
o
n
C
,
D
27
Points
Points
Hide this folder from students.
28
41
powered by
powered by
O
T
A
B
C
D
10
80
X
90°
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy