Loading...
Red Area = ?
Save Copy
Desmos Logo
Log In
Sign Up
Expression 17: "G" Subscript, 1 , Baseline equals "F" Subscript, 1 , Baseline minus 1
G
1
=
F
1
−
1
equals
=
8.3 2 4 5 5 5 3 2 0 3 4
8
.
3
2
4
5
5
5
3
2
0
3
4
17
Expression 18: "G" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline
G
2
=
E
2
equals
=
2.3 2 4 5 5 5 3 2 0 3 4
2
.
3
2
4
5
5
5
3
2
0
3
4
18
Expression 19: "H" Subscript, 1 , Baseline equals "G" Subscript, 1 , Baseline minus 1
H
1
=
G
1
−
1
equals
=
7.3 2 4 5 5 5 3 2 0 3 4
7
.
3
2
4
5
5
5
3
2
0
3
4
19
Expression 20: "H" Subscript, 2 , Baseline equals "F" Subscript, 2 , Baseline
H
2
=
F
2
equals
=
3.3 2 4 5 5 5 3 2 0 3 4
3
.
3
2
4
5
5
5
3
2
0
3
4
20
Expression 21: "I" Subscript, 1 , Baseline equals "A" Subscript, 1 , Baseline
I
1
=
A
1
equals
=
6.3 2 4 5 5 5 3 2 0 3 4
6
.
3
2
4
5
5
5
3
2
0
3
4
21
Expression 22: "I" Subscript, 2 , Baseline equals "G" Subscript, 2 , Baseline
I
2
=
G
2
equals
=
2.3 2 4 5 5 5 3 2 0 3 4
2
.
3
2
4
5
5
5
3
2
0
3
4
22
Expression 23: "J" Subscript, 1 , Baseline equals "I" Subscript, 1 , Baseline minus 1
J
1
=
I
1
−
1
equals
=
5.3 2 4 5 5 5 3 2 0 3 4
5
.
3
2
4
5
5
5
3
2
0
3
4
23
Expression 24: "J" Subscript, 2 , Baseline equals "H" Subscript, 2 , Baseline
J
2
=
H
2
equals
=
3.3 2 4 5 5 5 3 2 0 3 4
3
.
3
2
4
5
5
5
3
2
0
3
4
24
Expression 25: "K" Subscript, 1 , Baseline equals "J" Subscript, 1 , Baseline minus 1
K
1
=
J
1
−
1
equals
=
4.3 2 4 5 5 5 3 2 0 3 4
4
.
3
2
4
5
5
5
3
2
0
3
4
25
Expression 26: "K" Subscript, 2 , Baseline equals "I" Subscript, 2 , Baseline
K
2
=
I
2
equals
=
2.3 2 4 5 5 5 3 2 0 3 4
2
.
3
2
4
5
5
5
3
2
0
3
4
26
Expression 27: "L" Subscript, 1 , Baseline equals "K" Subscript, 1 , Baseline minus 1
L
1
=
K
1
−
1
equals
=
3.3 2 4 5 5 5 3 2 0 3 4
3
.
3
2
4
5
5
5
3
2
0
3
4
27
Expression 28: "L" Subscript, 2 , Baseline equals "J" Subscript, 2 , Baseline
L
2
=
J
2
equals
=
3.3 2 4 5 5 5 3 2 0 3 4
3
.
3
2
4
5
5
5
3
2
0
3
4
28
Graphs
Graphs
Hide this folder from students.
29
Expression 30: polygon left parenthesis, "B" , "C" , "E" , "D" , right parenthesis
p
o
l
y
g
o
n
B
,
C
,
E
,
D
30
Expression 31: polygon left parenthesis, "D" , "E" , right parenthesis
p
o
l
y
g
o
n
D
,
E
31
Expression 32: polygon left parenthesis, "A" , "B" , "C" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
32
Expression 33: polygon left parenthesis, "F" , "G" , "H" , "I" , "J" , "K" , "L" , right parenthesis
p
o
l
y
g
o
n
F
,
G
,
H
,
I
,
J
,
K
,
L
33
Points
Points
Hide this folder from students.
34
48
powered by
powered by
A
B
C
D
E
F
G
H
I
J
K
L
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy