Expression 13: 2 "x" left parenthesis, "e" Superscript, ln left parenthesis, "x" squared plus "e" , right parenthesis , Baseline , right parenthesis to the negative 1st power2xelnx2+e−1
13
Expression 14: 2 "x" left parenthesis, "x" squared plus "e" , right parenthesis to the negative 1st power2xx2+e−1
14
Expression 15: StartFraction, 2 "x" Over "x" squared plus "e" , EndFraction2xx2+e
15
Da siderne er ens, er
16
Expression 17: "y" equals natural log left parenthesis, "x" squared plus "e" , right parenthesisy=lnx2+e
17
en løsning til differentialligningen.
18
Der ledes efter flere løsninger
Hide this folder from students.
19
Ligningen omskrives:
20
Expression 21: "f" left parenthesis, "x" , right parenthesis equals natural log left parenthesis, "x" squared plus "e" , right parenthesisfx=lnx2+e
21
Expression 22: "f" prime left parenthesis, "x" , right parenthesisf′x
22
Der integreres:
23
Expression 24: Start integral from "a" to "x" , end integral, "f" prime left parenthesis, "t" , right parenthesis "d" "t" plus "c"∫xaf′tdt+c