Uttryck 76: left parenthesis, "x" minus 4 , right parenthesis squared plus left parenthesis, "y" minus 7 , right parenthesis squared equals 5x−42+y−72=5
76
Uttryck 77: left parenthesis, "x" minus 4 , right parenthesis squared plus left parenthesis, "y" minus 7 , right parenthesis squared equals 3.5x−42+y−72=3.5
77
Uttryck 78: left parenthesis, "x" minus 4 , right parenthesis squared plus left parenthesis, "y" minus 7 , right parenthesis squared equals 2x−42+y−72=2
78
Uttryck 79: left parenthesis, "x" minus 4 , right parenthesis squared plus left parenthesis, "y" minus 7 , right parenthesis squared equals 0.1x−42+y−72=0.1
79
Uttryck 80: "y" equals 7 StartRoot, "x" minus 4 , EndRoot plus 9.5 left brace, 15 greater than "y" , right bracey=7x−4+9.515>y
80
Uttryck 81: "y" equals StartRoot, "x" minus 6.6 5 , EndRoot plus 7 left brace, 9.6 greater than "x" , right bracey=x−6.65+79.6>x
81
Uttryck 82: "y" equals log left parenthesis, "x" negative 3 , right parenthesis plus 4.2 left brace, 3 less than "x" less than 12.4 , right brace left brace, 1.5 less than "y" , right bracey=logx−3+4.23<x<12.41.5<y
82
Uttryck 83: left parenthesis, "x" plus 10 , right parenthesis squared plus left parenthesis, "y" plus 10 , right parenthesis squared equals 10x+102+y+102=10
83
Uttryck 84: "y" equals 2 StartAbsoluteValue, "x" plus 10 , EndAbsoluteValue minus 12.8 left brace, negative 11 less than "x" less than negative 9 , right bracey=2x+10−12.8−11<x<−9
84
Uttryck 85: "y" equals negative 2.9 StartAbsoluteValue, "x" plus 10 , EndAbsoluteValue minus 7.8 left brace, negative 11 less than "x" less than negative 9 , right bracey=−2.9x+10−7.8−11<x<−9
85
Uttryck 86: "y" equals negative 10 left brace, negative 7 less than "x" less than negative 2 , right bracey=−10−7<x<−2
86
Uttryck 87: "x" equals negative 2 left brace, negative 20 less than "y" less than negative 5 , right bracex=−2−20<y<−5
87
Uttryck 88: "x" equals negative 10 left brace, negative 19 less than "y" less than negative 13.2 , right bracex=−10−19<y<−13.2
88
Uttryck 89: "y" equals StartRoot, "x" plus 10 , EndRoot minus 7 left brace, "y" less than negative 5 , right bracey=x+10−7y<−5
89
Uttryck 90: "y" equals negative StartRoot, "x" plus 17.9 , EndRoot minus 5 left brace, "x" less than negative 12 , right bracey=−x+17.9−5x<−12
90
Uttryck 91: "y" equals negative 17.6 4 left brace, 7 less than "x" less than 20 , right bracey=−17.647<x<20
91
Uttryck 92: 20 StartAbsoluteValue, "y" plus 18 , EndAbsoluteValue equals 0.9 "x" minus 0 left brace, 0 less than "x" less than 9 , right brace20y+18=0.9x−00<x<9
92
Uttryck 93: "y" equals negative 18.3 6 left brace, 7 less than "x" less than 20 , right bracey=−18.367<x<20
93
Uttryck 94: .1 left parenthesis, "x" minus 9 , right parenthesis squared plus left parenthesis, "y" plus 7 , right parenthesis squared equals 4.1x−92+y+72=4
94
Uttryck 95: "x" equals 5 left brace, negative 5.5 greater than "y" greater than negative 8.5 , right bracex=5−5.5>y>−8.5
95
Uttryck 96: "x" equals 7 left brace, negative 5.0 greater than "y" greater than negative 8.9 , right bracex=7−5.0>y>−8.9
96
Uttryck 97: "x" equals 9 left brace, negative 5 greater than "y" greater than negative 9 , right bracex=9−5>y>−9
97
Uttryck 98: "x" equals 11 left brace, negative 5.1 greater than "y" greater than negative 8.9 , right bracex=11−5.1>y>−8.9
98
Uttryck 99: "x" equals 13 left brace, negative 5.5 greater than "y" greater than negative 8.6 , right bracex=13−5.5>y>−8.6
99
Uttryck 100: "y" equals negative 2 StartAbsoluteValue, "x" minus 8 , EndAbsoluteValue minus 3 left brace, negative 5 less than "y" , right bracey=−2x−8−3−5<y
100
Uttryck 101: "y" equals negative StartRoot, "x" , EndRoot minus 6 left brace, 0.2 less than "x" less than 3.2 , right bracey=−x−60.2<x<3.2
101
Uttryck 102: left parenthesis, "x" minus 9 , right parenthesis squared plus left parenthesis, "y" plus 13.3 , right parenthesis squared equals 4x−92+y+13.32=4
102
Uttryck 103: "y" equals 2 StartRoot, "x" minus 9 , EndRoot minus 11.4 left brace, 10.5 greater than "x" , right bracey=2x−9−11.410.5>x
103
Uttryck 104: "y" equals StartRoot, negative "x" plus 7 , EndRoot minus 12.9 left brace, 0 less than "x" , right bracey=−x+7−12.90<x
104
Uttryck 105: "y" equals negative 5 StartRoot, "x" minus 9 , EndRoot minus 15.4 left brace, "y" greater than negative 17.7 , right bracey=−5x−9−15.4y>−17.7
105
Uttryck 106: "y" equals 3 left parenthesis, "x" minus 13 , right parenthesis Superscript, 3 , Baseline minus 13 left brace, negative 15 less than "y" less than negative 8.1 , right bracey=3x−133−13−15<y<−8.1
106
Uttryck 107: StartRoot, "x" minus 11 , EndRoot minus 13.5 left brace, "x" less than 13.7 , right bracex−11−13.5x<13.7
107
Uttryck 108: "x" equals 16 left brace, negative 15 less than "y" less than negative 9 , right bracex=16−15<y<−9
108
Uttryck 109: "x" equals 19 left brace, negative 15 less than "y" less than negative 9 , right bracex=19−15<y<−9
109
Uttryck 110: "y" equals negative 9 left brace, 16 less than "x" less than 19 , right bracey=−916<x<19
110
Uttryck 111: "y" equals negative 15 left brace, 16 less than "x" less than 19 , right bracey=−1516<x<19
111
Uttryck 112: "y" equals negative 14 left brace, 16 less than "x" less than 19 , right bracey=−1416<x<19
112
Uttryck 113: "y" equals negative 13 left brace, 16 less than "x" less than 19 , right bracey=−1316<x<19
113
Uttryck 114: "y" equals negative 12 left brace, 16 less than "x" less than 19 , right bracey=−1216<x<19
114
Uttryck 115: "y" equals negative 11 left brace, 16 less than "x" less than 19 , right bracey=−1116<x<19
115
Uttryck 116: "x" equals 18 left brace, negative 15 less than "y" less than negative 9 , right bracex=18−15<y<−9
116
Uttryck 117: "x" equals 17 left brace, negative 14 less than "y" less than negative 11 , right bracex=17−14<y<−11
117
Uttryck 118: "y" equals negative 15 left brace, 12.2 less than "x" less than 16 , right bracey=−1512.2<x<16
118
Uttryck 119: "y" equals 5 left parenthesis, "x" minus 14 , right parenthesis Superscript, 3 , Baseline minus 3 left brace, negative 5.6 less than "y" less than 0 , right bracey=5x−143−3−5.6<y<0
119
Uttryck 120: "y" equals negative StartAbsoluteValue, "x" plus 11 , EndAbsoluteValue plus 13 left brace, 7 less than "y" less than 13 , right bracey=−x+11+137<y<13
120
Uttryck 121: "y" equals negative StartRoot, "x" plus 7 , EndRoot plus 13 left brace, 0 greater than "x" , right bracey=−x+7+130>x
121
Uttryck 122: "y" equals negative StartRoot, negative "x" minus 15 , EndRoot plus 13 left brace, negative 20 less than "x" , right bracey=−−x−15+13−20<x
122
Uttryck 123: "y" equals negative 4 left brace, negative 20 less than "x" less than negative 12 , right bracey=−4−20<x<−12
123
Uttryck 124: "y" equals negative 2 left brace, negative 20 less than "x" less than negative 12 , right bracey=−2−20<x<−12
124
Uttryck 125: "x" equals negative 11.5 left brace, negative 11.3 less than "y" less than negative 8.9 , right bracex=−11.5−11.3<y<−8.9
125
Uttryck 126: "x" equals negative 12 left brace, negative 11.5 less than "y" less than negative 8.5 , right bracex=−12−11.5<y<−8.5
126
Uttryck 127: "x" equals negative 12.5 left brace, negative 11.8 less than "y" less than negative 8.3 , right bracex=−12.5−11.8<y<−8.3
127
Uttryck 128: "x" equals negative 7.5 left brace, negative 11.7 less than "y" less than negative 8.3 , right bracex=−7.5−11.7<y<−8.3
128
Uttryck 129: "x" equals negative 7.9 left brace, negative 11.5 less than "y" less than negative 8.5 , right bracex=−7.9−11.5<y<−8.5
129
Uttryck 130: "x" equals negative 8.4 left brace, negative 11.3 less than "y" less than negative 8.9 , right bracex=−8.4−11.3<y<−8.9
130
Uttryck 131: "y" equals 15 left brace, negative 20 less than "x" less than negative 17.9 , right bracey=15−20<x<−17.9
131
Uttryck 132: "y" equals 17 left brace, negative 20 less than "x" less than negative 17.9 , right bracey=17−20<x<−17.9
132
Uttryck 133: "y" equals negative StartRoot, negative "x" minus 10 , EndRoot plus 7 left brace, 4.7 6 less than "y" , right bracey=−−x−10+74.76<y
133
Uttryck 134: "y" equals negative StartRoot, "x" plus 5 , EndRoot plus 7 left brace, 4.8 less than "y" , right bracey=−x+5+74.8<y
134
Uttryck 135: "x" equals 18 left brace, negative 9 less than "y" less than 0 , right bracex=18−9<y<0
135
Uttryck 136: "x" equals 18 left brace, negative 17.8 less than "y" less than negative 15 , right bracex=18−17.8<y<−15
136
Uttryck 137: left parenthesis, "x" plus 9 , right parenthesis squared plus left parenthesis, "y" plus 2 , right parenthesis squared equals 1x+92+y+22=1
137
Uttryck 138: left parenthesis, "x" plus 7 , right parenthesis squared plus left parenthesis, "y" plus 2 , right parenthesis squared equals 1x+72+y+22=1
138
Uttryck 139: left parenthesis, "x" plus 5 , right parenthesis squared plus left parenthesis, "y" plus 2 , right parenthesis squared equals 1x+52+y+22=1
139
Uttryck 140: left parenthesis, "x" plus 8 , right parenthesis squared plus left parenthesis, "y" plus 3.1 , right parenthesis squared equals 1x+82+y+3.12=1
140
Uttryck 141: left parenthesis, "x" plus 6 , right parenthesis squared plus left parenthesis, "y" plus 3.1 , right parenthesis squared equals 1x+62+y+3.12=1
141
Uttryck 142: "x" equals negative 15 left brace, negative 19 less than "y" less than negative 10 , right bracex=−15−19<y<−10
142
Uttryck 143: "x" equals negative 16 left brace, negative 15 less than "y" less than negative 10 , right bracex=−16−15<y<−10
143
Uttryck 144: "x" equals negative 17 left brace, negative 15 less than "y" less than negative 10 , right bracex=−17−15<y<−10
144
Uttryck 145: "x" equals negative 14 left brace, negative 15 less than "y" less than negative 10 , right bracex=−14−15<y<−10
145
Uttryck 146: "y" equals negative 10 left brace, negative 17.8 less than "x" less than negative 13 , right bracey=−10−17.8<x<−13
146
Uttryck 147: "y" equals negative 15 left brace, negative 17 less than "x" less than negative 14 , right bracey=−15−17<x<−14
147
Uttryck 148: "y" equals negative 12 left brace, negative 17 less than "x" less than negative 14 , right bracey=−12−17<x<−14
148
Uttryck 149: "y" equals negative 13 left brace, negative 17 less than "x" less than negative 14 , right bracey=−13−17<x<−14
149
Uttryck 150: "y" equals negative 14 left brace, negative 17 less than "x" less than negative 14 , right bracey=−14−17<x<−14
150
Uttryck 151: "y" equals negative 11 left brace, negative 17 less than "x" less than negative 14 , right bracey=−11−17<x<−14
151
Uttryck 152:
152
153
driven av
driven av
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funktioner
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
eller
för att spara dina grafer!
Skapa en ny graf
Exempel
Linjer: Linjära funktioner
exempel
Linjer: Enpunktsformeln
exempel
Linjer: Tvåpunktsformeln
exempel
Parabler: Standardform
exempel
Parabler: Vertexform
exempel
Parabler: Standardform och tangens
exempel
Trigonometri: Våglängd och amplitud
exempel
Trigonometri: Fas
exempel
Trigonometri: Interferens
exempel
Trigonometri: Enhetscirkeln
exempel
Kägelsnitt: Cirkel
exempel
Kägelsnitt: Parabel och fokus
exempel
Kägelsnitt: Ellips med fokus
exempel
Kägelsnitt: Hyperbel
exempel
Polära ekvationer: Ros
exempel
Polära ekvationer: Logaritmisk spiral
exempel
Polära ekvationer: Limacon
exempel
Polära ekvationer: Kägelsnitt
exempel
Parameterform: Introduktion
exempel
Parameterform: Cykloid
exempel
Transformation: Avbildning av en funktion
exempel
Transformation: Förändra skalan på en funktion
exempel
Transformation: Invers av en funktion
exempel
Statistik: Linjär regression
exempel
Statistik: Anscombs kvartett
exempel
Statistik: Polynom av 4:e grad
exempel
Listor: Sinuskurvor
exempel
Listor: Stickandet av kurvor
exempel
Listor: Rita en graf från en lista med punkter
exempel
Infinitesimalkalkyl: Derivata
exempel
Infinitesimalkalkyl: Sekantlinje
exempel
Infinitesimalkalkyl: Tangentlinje
exempel
Infinitesimalkalkyl: Taylorutveckling av sin(x)
exempel
Infinitesimalkalkyl: Integraler
exempel
Infinitesimalkalkyl: Integraler med justerbara gränser