Loading...
AB = 3.65224436325
Save Copy
Desmos Logo
Log In
Sign Up
Expression 12: "A" Subscript, 2 , Baseline equals StartFraction, negative 1 Over "m" Subscript, 1 , Baseline , EndFraction left parenthesis, "A" Subscript, 1 , Baseline minus "P" Subscript, 1 , Baseline , right parenthesis plus "P" Subscript, 2 , Baseline
A
2
=
−
1
m
1
A
1
−
P
1
+
P
2
equals
=
3.5
3
.
5
12
Expression 13: StartFraction, negative 1 Over "m" Subscript, 1 , Baseline , EndFraction left parenthesis, "A" Subscript, 1 , Baseline minus "P" Subscript, 1 , Baseline , right parenthesis plus "P" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
−
1
m
1
A
1
−
P
1
+
P
2
=
O
2
13
Expression 14: "B" Subscript, 1 , Baseline equals StartFraction, "O" Subscript, 2 , Baseline minus "P" Subscript, 2 , Baseline Over StartNestedFraction, negative 1 NestedOver "m" Subscript, 1 , Baseline , EndNestedFraction , EndFraction plus "P" Subscript, 1 , Baseline
B
1
=
O
2
−
P
2
−
1
m
1
+
P
1
equals
=
1.0 4 3 4 9 8 3 8 9 5
1
.
0
4
3
4
9
8
3
8
9
5
14
Expression 15: "B" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline
B
2
=
O
2
equals
=
0
0
15
Expression 16: "P" Subscript, 1 , Baseline equals "R" cosine "B" Subscript, "O" "P" , Baseline
P
1
=
R
c
o
s
B
O
P
equals
=
0.9 5 8 3 1 4 8 4 7 5
0
.
9
5
8
3
1
4
8
4
7
5
16
Expression 17: "P" Subscript, 2 , Baseline equals "R" sine "B" Subscript, "O" "P" , Baseline
P
2
=
R
s
i
n
B
O
P
equals
=
0.2 8 5 7 1 4 2 8 5 7 1 4
0
.
2
8
5
7
1
4
2
8
5
7
1
4
17
Graphs
Graphs
Hide this folder from students.
18
Expression 19: "y" less than 25
y
<
2
5
19
Expression 20: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 90
9
0
20
Expression 21: polygon left parenthesis, "A" , "P" , "B" , "O" , "P" , "O" , right parenthesis
p
o
l
y
g
o
n
A
,
P
,
B
,
O
,
P
,
O
21
Expression 22: left parenthesis, 0.1 5cos 45 , 0.1 5 "t" sin 45 , right parenthesis
0
.
1
5
c
o
s
4
5
,
0
.
1
5
t
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
22
Expression 23: left parenthesis, 0.1 5 "t" cos 45 , 0.1 5sin 45 , right parenthesis
0
.
1
5
t
c
o
s
4
5
,
0
.
1
5
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
23
Points
Points
Hide this folder from students.
24
34
powered by
powered by
O
A
B
P
R = 1
AB = ?
sin BOP = 2 / 7
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy