Prove: "Given side length a is constant, in any given right triangle lim side length b-> inf = side length c"
Expression 4: "f" left parenthesis, "x" , right parenthesis equals StartRoot, 3 squared plus "x" squared , EndRoot left brace, "x" greater than 0 , right bracefx=32+x2x>0
4
c-b approaching 0
5
Expression 6: "y" equals StartRoot, 3 squared plus "x" squared , EndRoot minus "x" left brace, "x" greater than 0 , right bracey=32+x2−xx>0
6
c/b approaching 1
7
Expression 8: "f" prime left parenthesis, 10 Superscript, "x" , Baseline , right parenthesis left brace, "x" greater than 0 , right bracef′10xx>0