Loading...
R = 4.5 ⇒ Diameter = 9
Save Copy
Desmos Logo
Log In
Sign Up
Expression 23: "C" Subscript, 2 , Baseline equals StartRoot, "R" squared minus "C" squared , EndRoot equals 4.3 9 9 7 7 5 5 2 7 3 8
C
2
=
R
2
−
C
2
1
equals
=
4.3 9 9 7 7 5 5 2 7 3 8
4
.
3
9
9
7
7
5
5
2
7
3
8
23
Expression 24: "D" Subscript, 1 , Baseline equals StartFraction, "R" "M" Subscript, 1 , Baseline Over StartRoot, "M" squared plus "M" squared , EndRoot , EndFraction equals negative 3.5
D
1
=
R
M
1
M
2
1
+
M
2
2
equals
=
negative 3.5
−
3
.
5
24
Expression 25: "D" Subscript, 2 , Baseline equals StartFraction, "R" "M" Subscript, 2 , Baseline Over StartRoot, "M" squared plus "M" squared , EndRoot , EndFraction equals 2.8 2 8 4 2 7 1 2 4 7 5
D
2
=
R
M
2
M
2
1
+
M
2
2
equals
=
2.8 2 8 4 2 7 1 2 4 7 5
2
.
8
2
8
4
2
7
1
2
4
7
5
25
Expression 26: "M" Subscript, 1 , Baseline equals StartFraction, "A" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFraction equals negative 2.7 2 2 2 2 2 2 2 2 2 2
M
1
=
A
1
+
C
1
2
equals
=
negative 2.7 2 2 2 2 2 2 2 2 2 2
−
2
.
7
2
2
2
2
2
2
2
2
2
2
26
Expression 27: StartFraction, "C" Subscript, 1 , Baseline minus "R" Over 2 , EndFraction equals negative 2.7 2 2 2 2 2 2 2 2 2 2
C
1
−
R
2
equals
=
negative 2.7 2 2 2 2 2 2 2 2 2 2
−
2
.
7
2
2
2
2
2
2
2
2
2
2
27
Expression 28: "M" Subscript, 2 , Baseline equals StartFraction, "C" Subscript, 2 , Baseline Over 2 , EndFraction equals 2.1 9 9 8 8 7 7 6 3 6 9
M
2
=
C
2
2
equals
=
2.1 9 9 8 8 7 7 6 3 6 9
2
.
1
9
9
8
8
7
7
6
3
6
9
28
Expression 29: StartFraction, StartRoot, "R" squared minus "C" squared , EndRoot Over 2 , EndFraction equals 2.1 9 9 8 8 7 7 6 3 6 9
R
2
−
C
2
1
2
equals
=
2.1 9 9 8 8 7 7 6 3 6 9
2
.
1
9
9
8
8
7
7
6
3
6
9
29
Graphs
Graphs
Hide this folder from students.
30
Expression 31: "y" less than 25 Has graph. To audio trace, press ALT+T.
y
<
2
5
31
Expression 32: polygon left parenthesis, "C" , "O" , right parenthesis Has graph.
p
o
l
y
g
o
n
C
,
O
32
Expression 33: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis Has graph.
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
33
Expression 34: polygon left parenthesis, "A" , "B" , "C" , "D" , "O" , "D" , "A" , "C" , right parenthesis Has graph.
p
o
l
y
g
o
n
A
,
B
,
C
,
D
,
O
,
D
,
A
,
C
34
Points
Points
Hide this folder from students.
35
47
powered by
powered by
O
A
B
C
D
M
3
3
7
AB = 2 R = ?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy