Uttryck 87: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .4 5x+1.12.192+y−7.72−.52=.45
87
Uttryck 88: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .4 5x+1.12.192+y−7.72−.52=.45
88
Uttryck 89: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .4x+1.12.192+y−7.72−.52=.4
89
Uttryck 90: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .4x+1.12.192+y−7.72−.52=.4
90
Uttryck 91: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .3 5x+1.12.192+y−7.72−.52=.35
91
Uttryck 92: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .3 5x+1.12.192+y−7.72−.52=.35
92
Uttryck 93: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .3x+1.12.192+y−7.72−.52=.3
93
Uttryck 94: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .3x+1.12.192+y−7.72−.52=.3
94
Uttryck 95: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .2 5x+1.12.192+y−7.72−.52=.25
95
Uttryck 96: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .2 5x+1.12.192+y−7.72−.52=.25
96
Uttryck 97: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .2x+1.12.192+y−7.72−.52=.2
97
Uttryck 98: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .2x+1.12.192+y−7.72−.52=.2
98
Uttryck 99: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .1 5x+1.12.192+y−7.72−.52=.15
99
Uttryck 100: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .1 5x+1.12.192+y−7.72−.52=.15
100
Uttryck 101: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .1 5x+1.12.192+y−7.72−.52=.15
101
Uttryck 102: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .1x+1.12.192+y−7.72−.52=.1
102
Uttryck 103: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .1x+1.12.192+y−7.72−.52=.1
103
Uttryck 104: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .0 5x+1.12.192+y−7.72−.52=.05
104
Uttryck 105: StartFraction, left parenthesis, "x" plus 1.1 , right parenthesis squared Over .1 9 squared , EndFraction plus StartFraction, left parenthesis, "y" minus 7.7 , right parenthesis squared Over negative .5 squared , EndFraction equals .0 5x+1.12.192+y−7.72−.52=.05
105
Uttryck 106: "y" equals negative .7 "x" plus 8.5 left brace, 8.5 greater than "y" greater than 7.0 2 , right bracey=−.7x+8.58.5>y>7.02
106
Uttryck 107: "y" equals negative .7 "x" plus 8.5 left brace, 8.5 greater than "y" greater than 7.0 2 , right bracey=−.7x+8.58.5>y>7.02
107
Uttryck 108: "y" equals negative .7 "x" plus 8.5 left brace, 8.5 greater than "y" greater than 7.0 2 , right bracey=−.7x+8.58.5>y>7.02
108
Uttryck 109: "y" equals negative .7 "x" plus 8.5 left brace, 8.5 greater than "y" greater than 7.0 2 , right bracey=−.7x+8.58.5>y>7.02
109
Uttryck 110: "y" equals .6 "x" plus 5.8 left brace, 6 less than "y" less than 7.0 5 , right bracey=.6x+5.86<y<7.05
110
Uttryck 111: "y" equals .6 "x" plus 5.8 left brace, 6 less than "y" less than 7.0 5 , right bracey=.6x+5.86<y<7.05
111
Uttryck 112: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
112
Uttryck 113: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
113
Uttryck 114: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
114
Uttryck 115: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
115
Uttryck 116: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
116
Uttryck 117: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
117
Uttryck 118: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
118
Uttryck 119: "y" equals negative .5 "x" minus 3 left brace, negative 2.3 6 8 greater than "y" greater than negative 3 , right bracey=−.5x−3−2.368>y>−3
119
Uttryck 120: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
120
Uttryck 121: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
121
Uttryck 122: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
122
Uttryck 123: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
123
Uttryck 124: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
124
Uttryck 125: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
125
Uttryck 126: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
126
Uttryck 127: "y" equals negative 2.3 5 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=−2.35−1.22<x<.2
127
Uttryck 128: "y" equals .5 "x" minus 1.7 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=.5x−1.7−1.22<x<.2
128
Uttryck 129: "y" equals .5 "x" minus 1.7 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=.5x−1.7−1.22<x<.2
129
Uttryck 130: "y" equals .5 "x" minus 1.7 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=.5x−1.7−1.22<x<.2
130
Uttryck 131: "y" equals .5 "x" minus 1.7 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=.5x−1.7−1.22<x<.2
131
Uttryck 132: "y" equals .5 "x" minus 1.7 left brace, negative 1.2 2 less than "x" less than .2 , right bracey=.5x−1.7−1.22<x<.2
132
Uttryck 133: "y" equals 2 "x" plus 18 left brace, negative 4.1 2 less than "x" less than negative 2 , right bracey=2x+18−4.12<x<−2
133
Uttryck 134: "y" equals 2 "x" plus 18 left brace, negative 4.1 2 less than "x" less than negative 2 , right bracey=2x+18−4.12<x<−2
134
Uttryck 135: "y" equals negative 2 "x" plus 10 left brace, .1 2 greater than "x" greater than negative 2 , right bracey=−2x+10.12>x>−2
135
Uttryck 136: "y" equals negative 2 "x" plus 10 left brace, .1 2 greater than "x" greater than negative 2 , right bracey=−2x+10.12>x>−2
136
Uttryck 137: "x" equals negative 15 left brace, negative 2.9 5 less than "y" less than 1 , right bracex=−15−2.95<y<1
137
Uttryck 138: "x" equals negative 12 left brace, negative 1.7 2 less than "y" less than 1 , right bracex=−12−1.72<y<1
138
Uttryck 139: "y" equals 1 left brace, negative 20 less than "x" less than negative 7 , right bracey=1−20<x<−7
139
Uttryck 140: "y" equals StartFraction, 2 Over 1 , EndFraction "x" plus 41 left brace, 1 less than "y" less than 5 , right bracey=21x+411<y<5
140
Uttryck 141: "y" equals StartFraction, negative 2 Over 1 , EndFraction "x" minus 13 left brace, 1 less than "y" less than 5 , right bracey=−21x−131<y<5
141
Uttryck 142: "y" equals 5 left brace, negative 9 less than "x" less than negative 8 , right bracey=5−9<x<−8
142
Uttryck 143: "y" equals 5 left brace, negative 19 less than "x" less than negative 18 , right bracey=5−19<x<−18
143
Uttryck 144: "y" equals StartFraction, 2 Over 1 , EndFraction "x" plus 43 left brace, negative 19 less than "x" less than negative 17 , right bracey=21x+43−19<x<−17
144
Uttryck 145: "y" equals negative StartFraction, 2 Over 1 , EndFraction "x" minus 11 left brace, negative 10 less than "x" less than negative 8 , right bracey=−21x−11−10<x<−8
145
Uttryck 146: "y" equals 9 left brace, negative 18 less than "x" less than negative 17 , right bracey=9−18<x<−17
146
Uttryck 147: "y" equals 9 left brace, negative 10 less than "x" less than negative 9 , right bracey=9−10<x<−9
147
Uttryck 148: "y" equals StartFraction, 2 Over 1 , EndFraction "x" plus 45 left brace, negative 18 less than "x" less than negative 16 , right bracey=21x+45−18<x<−16
148
Uttryck 149: "y" equals negative StartFraction, 2 Over 1 , EndFraction "x" minus 9 left brace, negative 9 greater than "x" greater than negative 11 , right bracey=−21x−9−9>x>−11
149
Uttryck 150: "y" equals 13 left brace, negative 11 less than "x" less than negative 10 , right bracey=13−11<x<−10
150
Uttryck 151: "y" equals 13 left brace, negative 17 less than "x" less than negative 16 , right bracey=13−17<x<−16
151
Uttryck 152: "y" equals 1.8 "x" plus 43.5 left brace, negative 13.4 7 greater than "x" greater than negative 17 , right bracey=1.8x+43.5−13.47>x>−17
152
Uttryck 153: "y" equals negative 1.8 "x" minus 5 left brace, negative 13.4 7 less than "x" less than negative 10 , right bracey=−1.8x−5−13.47<x<−10
153
Uttryck 154: "y" equals .5 "x" plus 20 left brace, negative 16.6 7 less than "x" less than negative 10.8 , right bracey=.5x+20−16.67<x<−10.8
154
Uttryck 155: "y" equals .5 "x" plus 20 left brace, negative 16.6 7 less than "x" less than negative 10.8 , right bracey=.5x+20−16.67<x<−10.8
155
Uttryck 156: "y" equals negative .5 "x" plus 9 left brace, negative 15 less than "x" less than negative 10.8 , right bracey=−.5x+9−15<x<−10.8
156
Uttryck 157: "y" equals negative .5 "x" plus 9 left brace, negative 15 less than "x" less than negative 10.8 , right bracey=−.5x+9−15<x<−10.8
157
Uttryck 158: "y" equals negative .5 "x" plus 3.5 left brace, negative 16.5 less than "x" less than negative 9.6 7 , right bracey=−.5x+3.5−16.5<x<−9.67
158
Uttryck 159: "y" equals negative .5 "x" plus 3.5 left brace, negative 16.5 less than "x" less than negative 9.6 7 , right bracey=−.5x+3.5−16.5<x<−9.67
159
Uttryck 160: "y" equals .5 "x" plus 13 left brace, negative 9.6 greater than "x" greater than negative 18.6 3 , right bracey=.5x+13−9.6>x>−18.63
160
Uttryck 161: "y" equals .5 "x" plus 13 left brace, negative 9.6 greater than "x" greater than negative 18.6 3 , right bracey=.5x+13−9.6>x>−18.63
161
Uttryck 162: "y" equals negative .2 6 "x" minus 1 left brace, negative 18.5 less than "x" less than negative 7.6 9 , right bracey=−.26x−1−18.5<x<−7.69
162
Uttryck 163: "y" equals negative .2 6 "x" minus 1 left brace, negative 18.5 less than "x" less than negative 7.6 9 , right bracey=−.26x−1−18.5<x<−7.69
163
Uttryck 164: "y" equals 2 "x" plus 49 left brace, negative 13.5 greater than "x" greater than negative 14 , right bracey=2x+49−13.5>x>−14
164
Uttryck 165: "y" equals negative 2 "x" minus 5 left brace, negative 13.5 less than "x" less than negative 13 , right bracey=−2x−5−13.5<x<−13
165
Uttryck 166: "y" equals 21 left brace, negative 14 greater than "x" greater than negative 15 , right bracey=21−14>x>−15
166
Uttryck 167: "y" equals 21 left brace, negative 12 greater than "x" greater than negative 13 , right bracey=21−12>x>−13
167
Uttryck 168: "y" equals 1.5 "x" plus 39 left brace, negative 12.6 7 less than "x" less than negative 12 , right bracey=1.5x+39−12.67<x<−12
168
Uttryck 169: "y" equals negative 1.5 "x" minus 1.5 left brace, negative 15 less than "x" less than negative 14.3 5 , right bracey=−1.5x−1.5−15<x<−14.35
169
Uttryck 170: "y" equals 2 "x" plus 48.7 left brace, negative 14.8 5 less than "x" less than negative 14.3 5 , right bracey=2x+48.7−14.85<x<−14.35
170
Uttryck 171: "y" equals negative 2 "x" minus 5.4 left brace, 20 greater than "y" greater than 19 , right bracey=−2x−5.420>y>19
171
Uttryck 172: "y" equals StartFraction, 2.5 Over 7 , EndFraction "x" plus 24.3 left brace, 19 less than "y" less than 19.4 8 , right bracey=2.57x+24.319<y<19.48
172
Uttryck 173: "y" equals negative StartFraction, 2.5 Over 7 , EndFraction "x" plus 14.6 5 left brace, negative 12.2 5 5 greater than "x" greater than negative 13.5 , right bracey=−2.57x+14.65−12.255>x>−13.5
173
174
driven av
driven av
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funktioner
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
eller
för att spara dina grafer!
Skapa en ny graf
Exempel
Linjer: Linjära funktioner
exempel
Linjer: Enpunktsformeln
exempel
Linjer: Tvåpunktsformeln
exempel
Parabler: Standardform
exempel
Parabler: Vertexform
exempel
Parabler: Standardform och tangens
exempel
Trigonometri: Våglängd och amplitud
exempel
Trigonometri: Fas
exempel
Trigonometri: Interferens
exempel
Trigonometri: Enhetscirkeln
exempel
Kägelsnitt: Cirkel
exempel
Kägelsnitt: Parabel och fokus
exempel
Kägelsnitt: Ellips med fokus
exempel
Kägelsnitt: Hyperbel
exempel
Polära ekvationer: Ros
exempel
Polära ekvationer: Logaritmisk spiral
exempel
Polära ekvationer: Limacon
exempel
Polära ekvationer: Kägelsnitt
exempel
Parameterform: Introduktion
exempel
Parameterform: Cykloid
exempel
Transformation: Avbildning av en funktion
exempel
Transformation: Förändra skalan på en funktion
exempel
Transformation: Invers av en funktion
exempel
Statistik: Linjär regression
exempel
Statistik: Anscombs kvartett
exempel
Statistik: Polynom av 4:e grad
exempel
Listor: Sinuskurvor
exempel
Listor: Stickandet av kurvor
exempel
Listor: Rita en graf från en lista med punkter
exempel
Infinitesimalkalkyl: Derivata
exempel
Infinitesimalkalkyl: Sekantlinje
exempel
Infinitesimalkalkyl: Tangentlinje
exempel
Infinitesimalkalkyl: Taylorutveckling av sin(x)
exempel
Infinitesimalkalkyl: Integraler
exempel
Infinitesimalkalkyl: Integraler med justerbara gränser