Loading...
CAK = 15°
Save Copy
Desmos Logo
Log In
Sign Up
Expression 16: "D" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
D
2
=
A
2
equals
=
0
0
16
Expression 17: "E" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
E
2
=
A
2
equals
=
0
0
17
Expression 18: StartFraction, StartNestedFraction, "B" Subscript, "M" , Baseline StartRoot, 3 , EndRoot NestedOver 2 , EndNestedFraction Over StartNestedFraction, "B" Subscript, "M" , Baseline NestedOver 2 , EndNestedFraction , EndFraction
B
M
3
2
B
M
2
equals
=
1.7 3 2 0 5 0 8 0 7 5 7
1
.
7
3
2
0
5
0
8
0
7
5
7
18
Expression 19: StartRoot, 3 , EndRoot
3
equals
=
1.7 3 2 0 5 0 8 0 7 5 7
1
.
7
3
2
0
5
0
8
0
7
5
7
19
Expression 20: "K" Subscript, 1 , Baseline equals "L" Subscript, 1 , Baseline minus StartRoot, 3 , EndRoot left parenthesis, "L" Subscript, 2 , Baseline minus "B" Subscript, 2 , Baseline , right parenthesis
K
1
=
L
1
−
3
L
2
−
B
2
equals
=
7.4 7 6 3 7 7 0 1 8 9 2
7
.
4
7
6
3
7
7
0
1
8
9
2
20
Expression 21: "K" Subscript, 2 , Baseline equals "L" Subscript, 2 , Baseline plus StartRoot, 3 , EndRoot left parenthesis, "L" Subscript, 1 , Baseline minus "B" Subscript, 1 , Baseline , right parenthesis
K
2
=
L
2
+
3
L
1
−
B
1
equals
=
12.9 4 9 4 6 4 8 5 3 3
1
2
.
9
4
9
4
6
4
8
5
3
3
21
Expression 22: "L" Subscript, 1 , Baseline equals StartFraction, "M" Subscript, 1 , Baseline Over 2 , EndFraction
L
1
=
M
1
2
equals
=
3.1 4 6 2 5
3
.
1
4
6
2
5
22
Expression 23: "L" Subscript, 2 , Baseline equals StartFraction, "B" Subscript, 2 , Baseline plus "M" Subscript, 2 , Baseline Over 2 , EndFraction
L
2
=
B
2
+
M
2
2
equals
=
7.5
7
.
5
23
Expression 24: "M" Subscript, 1 , Baseline equals StartFraction, "E" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFraction
M
1
=
E
1
+
C
1
2
equals
=
6.2 9 2 5
6
.
2
9
2
5
24
Expression 25: "M" Subscript, 2 , Baseline equals StartFraction, "E" Subscript, 2 , Baseline plus "C" Subscript, 2 , Baseline Over 2 , EndFraction
M
2
=
E
2
+
C
2
2
equals
=
5
5
25
Graphs
Graphs
Hide this folder from students.
26
Expression 27: "y" less than 25
y
<
2
5
27
Expression 28: polygon left parenthesis, "B" , "M" , "K" , right parenthesis
p
o
l
y
g
o
n
B
,
M
,
K
28
Expression 29: polygon left parenthesis, "A" , "K" , "A" , "C" , "A" , right parenthesis
p
o
l
y
g
o
n
A
,
K
,
A
,
C
,
A
29
Expression 30: polygon left parenthesis, "A" , "B" , "C" , "E" , "C" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
E
,
C
,
D
30
Points
Points
Hide this folder from students.
31
48
powered by
powered by
A
B
C
D
K
E
M
|
|
|
||
||
?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy