İfade 3: "A" Subscript, 1 , Baseline equals mod left parenthesis, left bracket, "h" Subscript, 1 , Baseline , "h" Subscript, 1 , Baseline plus 7... "h" Subscript, 1 , Baseline plus left parenthesis, "r" minus 1 , right parenthesis 7 , right bracket , 50 , right parenthesis minus 1A1=modh1,h1+7...h1+r−17,50−1
3
"x" Subscript, 2 , Baselinex2
"A" Subscript, 1 , Baseline left bracket, "x" Subscript, 2 , Baseline , right bracketA1x2
11
22
33
44
55
66
77
88
99
1010
1111
4
İfade 5:
5
İfade 6:
6
7
sağlayıcı
sağlayıcı
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
özellikler
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
veya
grafiklerini kaydetmek için!
Yeni Boş Grafik
Örnekler
Doğrular: Eğimin ve Y-Eksenini Kesen Noktanın Bilindiği Durum
örnek
Doğrular: Bir Noktası ve Eğiminin Bilindiği Durum
örnek
Doğrular: İki Noktasının Bilindiği Durum
örnek
Paraboller: Standart Biçim
örnek
Paraboller: Tepe Noktası Biçimi
örnek
Paraboller: Standart Biçim + Tanjant
örnek
Trigonometri: Periyot ve Genlik
örnek
Trigonometri: Faz
örnek
Trigonometri: Dalga Girişimi
örnek
Trigonometri: Birim Çember
örnek
Konikler: Çember
örnek
Konikler: Parabol ve Odak Noktası
örnek
Konikler: Elips ve Odak Noktaları
örnek
Konikler: Hiperbol
örnek
Kutupsal: Gül
örnek
Kutupsal: Logaritmik Sarmal
örnek
Kutupsal: Limaçon
örnek
Kutupsal: Konik Kesitler
örnek
Parametrik: Giriş
örnek
Parametrik: Sikloit
örnek
Dönüşümler: Fonksiyonu Öteleme
örnek
Dönüşümler: Fonksiyonu Ölçekleme
örnek
Dönüşümler: Fonksiyonun Tersi
örnek
İstatistik: Doğrusal (Lineer) Regresyon
örnek
Anscombe Dörtlüsü
örnek
İstatistik: 4. Dereceden Polinom
örnek
Listeler: Sinüs Eğri Ailesi
örnek
Listeler: Doğrulardan Eğri Oluşturma
örnek
Listeler: Bir Listedeki Noktaları Çizmek
örnek
Kalkülüs: Türevler
örnek
Kalkülüs: Sekant Doğrusu
örnek
Kalkülüs: Tanjant Doğrusu
örnek
Kalkülüs: sin(x)'in Taylor Açılımı
örnek
Kalkülüs: İntegraller
örnek
Kalkülüs: Sınır Değerleri Değiştirilebilir İntegral