Loading...
X = BM = 5
Save Copy
Desmos Logo
Log In
Sign Up
Expression 17: "E" Subscript, 1 , Baseline equals StartFraction, "s" Over 2 , EndFraction equals 10
E
1
=
s
2
equals
=
10
1
0
17
Expression 18: "F" Subscript, 2 , Baseline equals StartFraction, "s" Over 2 , EndFraction equals 10
F
2
=
s
2
equals
=
10
1
0
18
Expression 19: "G" Subscript, 1 , Baseline equals StartFraction, "s" Over 2 , EndFraction equals 10
G
1
=
s
2
equals
=
10
1
0
19
Expression 20: "G" Subscript, 2 , Baseline equals "s" equals 20
G
2
=
s
equals
=
20
2
0
20
Expression 21: StartFraction, "s" minus "M" Subscript, 1 , Baseline Over "s" , EndFraction equals StartFraction, "s" minus "P" Subscript, 1 , Baseline Over "s" minus "P" Subscript, 2 , Baseline , EndFraction
s
−
M
1
s
=
s
−
P
1
s
−
P
2
21
Expression 22: "M" Subscript, 1 , Baseline equals "s" minus StartFraction, "s" left parenthesis, "s" minus "P" Subscript, 1 , Baseline , right parenthesis Over "s" minus "P" Subscript, 2 , Baseline , EndFraction equals 5
M
1
=
s
−
s
s
−
P
1
s
−
P
2
equals
=
5
5
22
Expression 23: "M" Subscript, 2 , Baseline equals "B" Subscript, 2 , Baseline equals 0
M
2
=
B
2
equals
=
0
0
23
Expression 24: "P" Subscript, 1 , Baseline equals 2 thirds "Q" Subscript, 1 , Baseline equals 12.8
P
1
=
2
3
Q
1
equals
=
12.8
1
2
.
8
24
Expression 25: "P" Subscript, 2 , Baseline equals "s" plus 2 thirds left parenthesis, "Q" Subscript, 2 , Baseline minus "s" , right parenthesis equals 10.4
P
2
=
s
+
2
3
Q
2
−
s
equals
=
10.4
1
0
.
4
25
Expression 26: StartFraction, "s" plus 2 "Q" Subscript, 2 , Baseline Over 3 , EndFraction equals 10.4
s
+
2
Q
2
3
equals
=
10.4
1
0
.
4
26
Expression 27: "Q" squared plus "Q" squared equals "s" squared
Q
2
1
+
Q
2
2
=
s
2
27
Expression 28: "Q" Subscript, 2 , Baseline equals StartRoot, "s" squared minus "Q" squared , EndRoot equals 5.6
Q
2
=
s
2
−
Q
2
1
equals
=
5.6
5
.
6
28
Graphs
Graphs
Hide this folder from students.
29
Expression 30: "y" less than 50 Has graph. To audio trace, press ALT+T.
y
<
5
0
30
Expression 31: left parenthesis, "s" cos "t" , "s" sin "t" , right parenthesis Has graph.
s
c
o
s
t
,
s
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 90
9
0
31
Expression 32: polygon left parenthesis, "A" , "Q" , "A" , "B" , "C" , "D" , "M" , "D" , right parenthesis Has graph.
p
o
l
y
g
o
n
A
,
Q
,
A
,
B
,
C
,
D
,
M
,
D
32
Points
Points
Hide this folder from students.
33
Expression 47:
47
48
powered by
powered by
A
B
C
D
M
P
Q
X
Right Triangle ADP in Square ABCD
s - X
16
8
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy