Expression 17: alpha equals sine to the negative 1st power left parenthesis, StartFraction, "x" Subscript, 1 , Baseline Over 4 , EndFraction , right parenthesisα=sin−1x14
equals=
41.4 0 9 6 2 2 1 0 9 341.4096221093
17
Altså er vinkel
18
Expression 19: "A" equals 2 alphaA=2α
equals=
82.8 1 9 2 4 4 2 1 8 582.8192442185
19
Eftersom
20
Expression 21: tangent left parenthesis, 2 "a" , right parenthesis equals StartFraction, "a" Over 3 , EndFractiontan2a=a3
21
er vinkel A's modstående side
22
Expression 23: "a" equals 3tangent "A"a=3tanA
equals=
23.8 1 1 7 6 1 7 9 9 623.8117617996
23
Dermed er hypotenusen
24
Expression 25: "c" equals StartRoot, "b" squared plus "a" squared , EndRootc=b2+a2
equals=
2424
25
Da vi kender vinklerne A og C,
26
kan vinkel B beregnes sådan:
27
Expression 28: "B" equals 180 minus "A" minus "C"B=180−A−C
equals=
7.1 8 0 7 5 5 7 8 1 4 67.18075578146
28
Vinkelhalveringslinje
Hide this folder from students.
29
Expression 30: left parenthesis, "b" "t" , "x" Subscript, 1 , Baseline "t" , right parenthesisbt,x1t
00
domain t Minimum:
less than or equal to "t" less than or equal to≤t≤