Expression 12: left bracket, StartFraction, "x" Over StartRoot, "u" , EndRoot , EndFraction times StartFraction, 1 Over 2 "x" , EndFraction "d" "u" , right bracket equals left bracket, StartFraction, 1 Over 2 StartRoot, "u" , EndRoot , EndFraction "d" "u" , right bracketxu·12xdu=12udu
12
Nu kan integralet bestemmes:
13
Expression 14: left bracket, StartFraction, 1 Over 2 StartRoot, "u" , EndRoot , EndFraction "d" "u" , right bracket equals StartRoot, "u" , EndRoot plus "c"12udu=u+c
14
Dermed er stamfunktionen
15
Expression 16: "F" left parenthesis, "x" , right parenthesis equals StartRoot, 1 plus "x" squared , EndRoot plus "c"Fx=1+x2+c