Loading...
Radius R = 2
Save Copy
Desmos Logo
Log In
Sign Up
Expression 13: "B" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
B
2
=
A
2
equals
=
negative 1.7 3 2 0 5 0 8 0 7 5 7
−
1
.
7
3
2
0
5
0
8
0
7
5
7
13
Expression 14: "C" Subscript, 1 , Baseline equals "B" Subscript, 1 , Baseline
C
1
=
B
1
equals
=
1
1
14
Expression 15: "C" Subscript, 2 , Baseline equals "B" Subscript, 2 , Baseline plus "A" Subscript, "B" , Baseline
C
2
=
B
2
+
A
B
equals
=
0.2 6 7 9 4 9 1 9 2 4 3 1
0
.
2
6
7
9
4
9
1
9
2
4
3
1
15
Expression 16: "E" Subscript, 1 , Baseline equals "A" Subscript, 1 , Baseline
E
1
=
A
1
equals
=
negative 1
−
1
16
Expression 17: "E" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline
E
2
=
C
2
equals
=
0.2 6 7 9 4 9 1 9 2 4 3 1
0
.
2
6
7
9
4
9
1
9
2
4
3
1
17
Expression 18: "D" Subscript, 1 , Baseline equals "E" Subscript, 1 , Baseline plus "A" Subscript, "B" , Baseline cosine 60
D
1
=
E
1
+
A
B
c
o
s
6
0
equals
=
8.8 8 1 7 8 4 1 9 7 times 10 to the negative 16th power
8
.
8
8
1
7
8
4
1
9
7
×
1
0
−
1
6
18
Expression 19: "D" Subscript, 2 , Baseline equals "E" Subscript, 2 , Baseline plus "A" Subscript, "B" , Baseline sine 60
D
2
=
E
2
+
A
B
s
i
n
6
0
equals
=
2
2
19
Graphs
Graphs
Hide this folder from students.
20
Hidden Label: left parenthesis, "O" Subscript, 1 , Baseline , "O" Subscript, 2 , Baseline , right parenthesis , left parenthesis, "A" Subscript, 1 , Baseline , "A" Subscript, 2 , Baseline , right parenthesis
O
1
,
O
2
,
A
1
,
A
2
Label
equals
=
left parenthesis, 0 , 0 , right parenthesis
0
,
0
left parenthesis, negative 1 , negative 1.7 3 2 , right parenthesis
−
1
,
−
1
.
7
3
2
21
Hidden Label: left parenthesis, "O" Subscript, 1 , Baseline , "O" Subscript, 2 , Baseline , right parenthesis , left parenthesis, "B" Subscript, 1 , Baseline , "B" Subscript, 2 , Baseline , right parenthesis
O
1
,
O
2
,
B
1
,
B
2
Label
equals
=
left parenthesis, 0 , 0 , right parenthesis
0
,
0
left parenthesis, 1 , negative 1.7 3 2 , right parenthesis
1
,
−
1
.
7
3
2
22
Expression 23: polygon left parenthesis, "A" , "B" , "C" , "D" , "E" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
,
D
,
E
23
Expression 24: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
24
Expression 25: polygon left parenthesis, "C" , "E" , right parenthesis
p
o
l
y
g
o
n
C
,
E
25
Points
Points
Hide this folder from students.
26
37
powered by
powered by
O
A
B
C
D
E
R
R
2
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy