Loading...
Greeks for Uni v2
Save Copy
Desmos Logo
Log In
Sign Up
Expression 20: Theta equals negative StartFraction, sigma squared Over 2 , EndFraction Gamma
Θ
=
−
σ
2
2
Γ
20
It reads, theta is proportional to volatility and concavity (negative convexity)
It reads, theta is proportional to volatility and concavity (negative convexity)
21
This relationship in LVR equation 16 can be derived from the above equation:
https://arxiv.org/pdf/2208.06046.pdf
This relationship in LVR equation 16 can be derived from the above equation: https://arxiv.org/pdf/2208.06046.pdf
22
Points on graph
Points on graph
Hide this folder from students.
23
Expression 36:
36
Expression 37:
37
Expression 38:
38
Expression 39:
39
Expression 40:
40
Expression 41:
41
Expression 42:
42
Expression 43:
43
Expression 44: Gamma Subscript, "v" 2 , Baseline left parenthesis, "x" , right parenthesis equals negative StartFraction, "L" Over 2 "x" Superscript, 3 halves , Baseline , EndFraction
Γ
v
2
x
=
−
L
2
x
3
2
44
Expression 45: Theta Subscript, "v" 2 , Baseline equals negative StartFraction, sigma squared Over 2 , EndFraction Gamma Subscript, "v" 2 , Baseline left parenthesis, "x" , right parenthesis
Θ
v
2
=
−
σ
2
2
Γ
v
2
x
45
Expression 46: Theta Subscript, "v" 2 , Baseline equals StartFraction, sigma squared Over 2 , EndFraction StartFraction, "L" Over 2 "x" Superscript, 3 halves , Baseline , EndFraction
Θ
v
2
=
σ
2
2
L
2
x
3
2
46
Expression 47: StartFraction, left parenthesis, StartNestedFraction, sigma squared NestedOver 2 , EndNestedFraction StartNestedFraction, "L" NestedOver 2 "x" Superscript, 3 halves , Baseline , EndNestedFraction , right parenthesis Over 2 "L" StartRoot, "x" , EndRoot , EndFraction equals StartFraction, left parenthesis, StartNestedFraction, sigma squared NestedOver 8 , EndNestedFraction StartNestedFraction, "L" NestedOver "x" Superscript, 3 halves , Baseline , EndNestedFraction , right parenthesis "x" Superscript, negative 1 half , Baseline Over "L" , EndFraction equals left parenthesis, StartFraction, sigma squared Over 8 , EndFraction "x" Superscript, negative 3 halves , Baseline , right parenthesis "x" Superscript, negative 1 half , Baseline equals left parenthesis, StartFraction, sigma squared Over 8 , EndFraction "x" Superscript, negative 4 halves , Baseline , right parenthesis equals left parenthesis, StartFraction, sigma squared Over 8 , EndFraction "x" to the negative 2nd power , right parenthesis equals StartFraction, sigma squared Over 8 "x" squared , EndFraction
σ
2
2
L
2
x
3
2
2
L
x
=
σ
2
8
L
x
3
2
x
−
1
2
L
=
σ
2
8
x
−
3
2
x
−
1
2
=
σ
2
8
x
−
4
2
=
σ
2
8
x
−
2
=
σ
2
8
x
2
47
Expression 48:
48
Expression 49: Gamma
Γ
49
Expression 50: sigma
σ
equals
=
1
1
50
Expression 51: Theta
Θ
51
52
powered by
powered by
LP Value :
2
2
Delta Subscript, "l" "p" , Baseline
Δ
l
p
:
1
1
Gamma Subscript, "l" "p" , Baseline
Γ
l
p
:
negative 0.5
−
0
.
5
nu Subscript, "l" "p" , Baseline
ν
l
p
:
0.5
0
.
5
Theta Subscript, "l" "p" , Baseline
Θ
l
p
:
0.1 2 5
0
.
1
2
5
rho Subscript, "l" "p" , Baseline
ρ
l
p
:
0.0 2
0
.
0
2
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy