Loading...
Angle ABC = X = 30°
Save Copy
Desmos Logo
Log In
Sign Up
Expression 14: "B" Subscript, 1 , Baseline equals "R" equals 1
B
1
=
R
equals
=
1
1
14
Expression 15: "B" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline equals 0
B
2
=
O
2
equals
=
0
0
15
Expression 16: "C" Subscript, 1 , Baseline equals "R" cosine "B" Subscript, "O" "C" , Baseline equals negative 0.5
C
1
=
R
c
o
s
B
O
C
equals
=
negative 0.5
−
0
.
5
16
Expression 17: "C" Subscript, 2 , Baseline equals "R" sine "B" Subscript, "O" "C" , Baseline equals 0.8 6 6 0 2 5 4 0 3 7 8 4
C
2
=
R
s
i
n
B
O
C
equals
=
0.8 6 6 0 2 5 4 0 3 7 8 4
0
.
8
6
6
0
2
5
4
0
3
7
8
4
17
Expression 18: "D" Subscript, 1 , Baseline equals "C" Subscript, 1 , Baseline plus StartFraction, 1 Over "B" Subscript, "C" , Baseline StartRoot, 3 , EndRoot , EndFraction left parenthesis, "B" Subscript, 1 , Baseline minus "C" Subscript, 1 , Baseline , right parenthesis equals negative 2.2 2 0 4 4 6 0 4 9 3 times 10 to the negative 16th power
D
1
=
C
1
+
1
B
C
3
B
1
−
C
1
equals
=
negative 2.2 2 0 4 4 6 0 4 9 3 times 10 to the negative 16th power
−
2
.
2
2
0
4
4
6
0
4
9
3
×
1
0
−
1
6
18
Expression 19: "D" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline plus StartFraction, 1 Over "B" Subscript, "C" , Baseline StartRoot, 3 , EndRoot , EndFraction left parenthesis, "B" Subscript, 2 , Baseline minus "C" Subscript, 2 , Baseline , right parenthesis equals 0.5 7 7 3 5 0 2 6 9 1 9
D
2
=
C
2
+
1
B
C
3
B
2
−
C
2
equals
=
0.5 7 7 3 5 0 2 6 9 1 9
0
.
5
7
7
3
5
0
2
6
9
1
9
19
Graphs
Graphs
Hide this folder from students.
20
Expression 21: polygon left parenthesis, "C" , "O" , right parenthesis Has graph.
p
o
l
y
g
o
n
C
,
O
21
Expression 22: polygon left parenthesis, "A" , "C" , right parenthesis
p
o
l
y
g
o
n
A
,
C
22
Expression 23: polygon left parenthesis, "A" , "D" , right parenthesis
p
o
l
y
g
o
n
A
,
D
23
Expression 24: polygon left parenthesis, "B" , "C" , right parenthesis
p
o
l
y
g
o
n
B
,
C
24
Expression 25: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
25
Expression 26: left parenthesis, "R" cos "t" , "R" sin 0 , right parenthesis
R
c
o
s
t
,
R
s
i
n
0
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
26
Points
Points
Hide this folder from students.
27
40
powered by
powered by
O
A
B
C
D
R = 1
Start black, StartFraction, 1 Over StartRoot, 3 , EndRoot , EndFraction End black
1
3
X
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy