Uttryck 23: StartFraction, 3.2 left parenthesis, "x" minus 10.5 , right parenthesis cubed Over 3.5 left parenthesis, "x" minus 10.5 , right parenthesis squared plus 15 left parenthesis, "x" minus 10.5 , right parenthesis , EndFraction plus 20 left brace, 0.9 less than "x" less than 3.1 , right brace3.2x−10.533.5x−10.52+15x−10.5+200.9<x<3.1
23
Uttryck 24: StartFraction, 3.2 left parenthesis, negative "x" minus 10.5 , right parenthesis cubed Over 3.5 left parenthesis, negative "x" minus 10.5 , right parenthesis squared plus 15 left parenthesis, negative "x" minus 10.5 , right parenthesis , EndFraction plus 20 plus 0.5 "e" Superscript, negative left parenthesis, "k" minus 2 , right parenthesis squared , Baseline left brace, 0.9 less than negative "x" less than 3.1 , right brace3.2−x−10.533.5−x−10.52+15−x−10.5+20+0.5e−k−220.9<−x<3.1
24
Uttryck 25: 0.2 left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 0.2 , right parenthesis left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 1 , right parenthesis left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 1.6 , right parenthesis minus 0.1 plus 0.0 5 "x" squared "e" Superscript, negative left parenthesis, "k" minus 2 , right parenthesis squared , Baseline left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 1.8 , right brace0.2x−0.2x−1x−1.6−0.1+0.05x2e−k−22x<1.8
25
Uttryck 26: 0.1 StartAbsoluteValue, "x" , EndAbsoluteValue plus 0.1 left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 0.2 , right parenthesis left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 1 , right parenthesis left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 1.6 , right parenthesis minus 0.2 9 plus 0.0 5 "x" squared "e" Superscript, negative left parenthesis, "k" minus 2 , right parenthesis squared , Baseline left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 1.8 , right brace0.1x+0.1x−0.2x−1x−1.6−0.29+0.05x2e−k−22x<1.8
26
Uttryck 27: "p" equals 0.1 9 "x" squared minus 0.7 plus 0.0 5 "x" squared "e" Superscript, negative left parenthesis, "k" minus 2 , right parenthesis squared , Baseline left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 1.8 , right bracep=0.19x2−0.7+0.05x2e−k−22x<1.8
27
Uttryck 28: 0.3 "x" squared minus 2.1 left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 0.5 , right brace0.3x2−2.1x<0.5
28
Uttryck 29: 0.2 5 "x" squared minus 3.6 left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 1.5 , right brace0.25x2−3.6x<1.5
29
Uttryck 30: StartAbsoluteValue, "x" , EndAbsoluteValue minus 2 equals StartRoot, negative left parenthesis, "y" plus 0.7 , right parenthesis squared plus 1.4 squared , EndRoot left brace, negative 1.7 less than "y" less than negative 1 , right bracex−2=−y+0.72+1.42−1.7<y<−1
30
Uttryck 31: 0.9 StartAbsoluteValue, "x" , EndAbsoluteValue minus 4.4 left brace, 1.5 less than StartAbsoluteValue, "x" , EndAbsoluteValue less than 2.9 5 , right brace0.9x−4.41.5<x<2.95
31
Uttryck 32: "y" equals 20 StartAbsoluteValue, "x" , EndAbsoluteValue minus 69 left brace, negative 0.9 5 less than "y" less than 1 , right bracey=20x−69−0.95<y<1
32
Uttryck 33: negative 0.0 4 StartAbsoluteValue, "x" , EndAbsoluteValue cubed plus 10 left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 3.0 7 , right brace−0.04x3+10x<3.07
33
Uttryck 34: StartAbsoluteValue, "x" , EndAbsoluteValue minus 4.2 equals negative 0.0 3 3 left parenthesis, "y" minus 3 , right parenthesis squared left brace, 4.2 less than "y" less than 8.8 , right bracex−4.2=−0.033y−324.2<y<8.8
34
Uttryck 35: StartAbsoluteValue, "x" , EndAbsoluteValue minus 3.5 equals negative 0.0 3 3 left parenthesis, "y" minus 3 , right parenthesis squared left brace, 3.6 less than "y" less than 7.7 , right bracex−3.5=−0.033y−323.6<y<7.7
35
Uttryck 36: negative 0.0 5 left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 3 , right parenthesis squared plus 7.8 left brace, StartAbsoluteValue, "x" , EndAbsoluteValue less than 2.8 , right brace−0.05x−32+7.8x<2.8
36
Uttryck 37: "y" equals negative StartRoot, negative left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 3.3 , right parenthesis squared plus 1.4 , EndRoot plus 2.1 left brace, StartAbsoluteValue, "x" , EndAbsoluteValue greater than 3.5 , right bracey=−−x−3.32+1.4+2.1x>3.5
37
Uttryck 38: StartAbsoluteValue, "x" , EndAbsoluteValue minus 3 equals 0.2 5 left parenthesis, "y" minus 2 , right parenthesis squared left brace, 3.2 less than "y" less than 4.3 , right bracex−3=0.25y−223.2<y<4.3
38
Uttryck 39: StartAbsoluteValue, "x" , EndAbsoluteValue minus 3.5 equals 0.2 5 left parenthesis, "y" minus 2 , right parenthesis squared left brace, 2.7 less than "y" less than 4 , right bracex−3.5=0.25y−222.7<y<4
39
Uttryck 40: StartAbsoluteValue, "x" , EndAbsoluteValue equals negative 0.1 left parenthesis, "y" minus 1.5 , right parenthesis left parenthesis, "y" minus 2.5 , right parenthesis left parenthesis, "y" minus 4 , right parenthesis plus 4.5 2 left brace, 2.1 5 less than "y" less than 4 , right bracex=−0.1y−1.5y−2.5y−4+4.522.15<y<4
40
Uttryck 41: "y" minus 4 equals StartRoot, negative left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 4.2 3 , right parenthesis squared plus 0.3 squared , EndRoot left brace, StartAbsoluteValue, "x" , EndAbsoluteValue greater than 4.2 , right bracey−4=−x−4.232+0.32x>4.2
41
Uttryck 42: StartAbsoluteValue, "x" , EndAbsoluteValue minus 3.8 equals negative left parenthesis, "y" minus 2.2 , right parenthesis squared left brace, 2.5 greater than "y" greater than 1.8 , right bracex−3.8=−y−2.222.5>y>1.8
42
Uttryck 43: StartAbsoluteValue, "x" , EndAbsoluteValue equals 0.3 left parenthesis, "y" minus 2 , right parenthesis left parenthesis, "y" minus 3.5 , right parenthesis left parenthesis, "y" minus 4 , right parenthesis plus 4.2 left brace, 2 less than "y" less than 3.5 , right bracex=0.3y−2y−3.5y−4+4.22<y<3.5
43
Uttryck 44: "y" minus 3 equals negative 3 left parenthesis, StartAbsoluteValue, "x" , EndAbsoluteValue minus 4.1 , right parenthesis squared left brace, "y" greater than 2.7 , right bracey−3=−3x−4.12y>2.7
44
Uttryck 45: 0.5 StartAbsoluteValue, "x" , EndAbsoluteValue plus 1.8 left brace, 3 less than StartAbsoluteValue, "x" , EndAbsoluteValue less than 3.6 , right brace0.5x+1.83<x<3.6
45
Uttryck 46: "x" equals left bracket, 2.8 , negative 2.8 , right bracket left brace, negative 4 less than "y" less than negative 2 , right bracex=2.8,−2.8−4<y<−2
46
47
driven av
driven av
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funktioner
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
eller
för att spara dina grafer!
Skapa en ny graf
Exempel
Linjer: Linjära funktioner
exempel
Linjer: Enpunktsformeln
exempel
Linjer: Tvåpunktsformeln
exempel
Parabler: Standardform
exempel
Parabler: Vertexform
exempel
Parabler: Standardform och tangens
exempel
Trigonometri: Våglängd och amplitud
exempel
Trigonometri: Fas
exempel
Trigonometri: Interferens
exempel
Trigonometri: Enhetscirkeln
exempel
Kägelsnitt: Cirkel
exempel
Kägelsnitt: Parabel och fokus
exempel
Kägelsnitt: Ellips med fokus
exempel
Kägelsnitt: Hyperbel
exempel
Polära ekvationer: Ros
exempel
Polära ekvationer: Logaritmisk spiral
exempel
Polära ekvationer: Limacon
exempel
Polära ekvationer: Kägelsnitt
exempel
Parameterform: Introduktion
exempel
Parameterform: Cykloid
exempel
Transformation: Avbildning av en funktion
exempel
Transformation: Förändra skalan på en funktion
exempel
Transformation: Invers av en funktion
exempel
Statistik: Linjär regression
exempel
Statistik: Anscombs kvartett
exempel
Statistik: Polynom av 4:e grad
exempel
Listor: Sinuskurvor
exempel
Listor: Stickandet av kurvor
exempel
Listor: Rita en graf från en lista med punkter
exempel
Infinitesimalkalkyl: Derivata
exempel
Infinitesimalkalkyl: Sekantlinje
exempel
Infinitesimalkalkyl: Tangentlinje
exempel
Infinitesimalkalkyl: Taylorutveckling av sin(x)
exempel
Infinitesimalkalkyl: Integraler
exempel
Infinitesimalkalkyl: Integraler med justerbara gränser