Expression 17: "p" Subscript, "y" , Baseline left parenthesis, "y" , right parenthesis equals "e" Superscript, phi Subscript, "i" , Baseline left parenthesis, "n" "y" , right parenthesis "v" StartRoot, "t" , EndRoot plus StartFraction, "v" squared "t" Over 2 , EndFraction , Baselinepyy=eϕinyvt+v2t2
17
Expression 18: "x" Subscript, "p" , Baseline left parenthesis, "p" , right parenthesis equals StartFraction, 1 minus phi left parenthesis, StartNestedFraction, ln left parenthesis, "p" , right parenthesis plus StartNestedFraction, "v" squared "t" NestedOver 2 , EndNestedFraction NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis Over "n" , EndFractionxpp=1−ϕlnp+v2t2vtn
18
Expression 19: "y" Subscript, "r" "m" "m" "c" "c" "p" , Baseline left parenthesis, "p" , right parenthesis equals StartFraction, phi left parenthesis, StartNestedFraction, ln left parenthesis, "p" , right parenthesis minus StartNestedFraction, "v" squared "t" NestedOver 2 , EndNestedFraction NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis Over "n" , EndFractionyrmmccpp=ϕlnp−v2t2vtn
19
As described in the papers, the portfolio value function for this curve matches the Black-Scholes valuation of a covered call (with strike price of 1).
20
Expression 21: "v" Subscript, "p" , Baseline left parenthesis, "p" , right parenthesis equals StartFraction, left parenthesis, "p" times left parenthesis, 1 minus phi left parenthesis, StartNestedFraction, ln left parenthesis, "p" , right parenthesis plus StartNestedFraction, "v" squared "t" NestedOver 2 , EndNestedFraction NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis , right parenthesis plus phi left parenthesis, StartNestedFraction, ln left parenthesis, "p" , right parenthesis minus StartNestedFraction, "v" squared "t" NestedOver 2 , EndNestedFraction NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis , right parenthesis Over "n" , EndFractionvpp=p·1−ϕlnp+v2t2vt+ϕlnp−v2t2vtn
21
To get the liquidity fingerprint, first, take the formula for y a function of the square root of price:
22
Expression 23: "y" Subscript, "p" "s" "q" "r" , Baseline left parenthesis, "p" Subscript, "s" "q" "r" "t" , Baseline , right parenthesis equals StartFraction, phi left parenthesis, StartNestedFraction, ln left parenthesis, "p" squared , right parenthesis minus StartNestedFraction, "v" squared "t" NestedOver 2 , EndNestedFraction NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis Over "n" , EndFractionypsqrpsqrt=ϕlnp2sqrt−v2t2vtn
23
Take the derivative:
24
Expression 25: "y" Subscript, "p" "s" "q" "r" , Baseline prime left parenthesis, "x" , right parenthesisypsqr′x
25
Expression 26: "y" Subscript, "p" "s" "q" "r" "p" "r" "i" "m" "e" , Baseline left parenthesis, "p" Subscript, "s" "q" "r" "t" , Baseline , right parenthesis equals StartFraction, StartNestedFraction, 2 NestedOver StartRoot, 2 pi , EndRoot , EndNestedFraction "e" Superscript, negative StartNestedFraction, left parenthesis, left parenthesis, StartNestedFraction, 2ln left parenthesis, "p" Subscript, "s" "q" "r" "t" , Baseline , right parenthesis NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction minus StartNestedFraction, "v" StartRoot, "t" , EndRoot NestedOver 2 , EndNestedFraction , right parenthesis , right parenthesis squared NestedOver 2 , EndNestedFraction , Baseline Over "n" "v" StartRoot, "t" , EndRoot "p" Subscript, "s" "q" "r" "t" , Baseline , EndFractionypsqrprimepsqrt=22πe−2lnpsqrtvt−vt222nvtpsqrt
26
Expression 27: "y" Subscript, "p" "s" "q" "r" "p" "r" "i" "m" "e" , Baseline left parenthesis, "p" Subscript, "s" "q" "r" "t" , Baseline , right parenthesis equals StartFraction, 2 Over "n" "v" StartRoot, "t" , EndRoot , EndFraction times StartFraction, 1 Over StartRoot, 2 pi , EndRoot , EndFraction "e" Superscript, negative StartFraction, left parenthesis, StartNestedFraction, 2ln left parenthesis, "p" Subscript, "s" "q" "r" "t" , Baseline , right parenthesis NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis squared Over 2 , EndFraction minus StartFraction, "v" squared "t" Over 8 , EndFraction , Baselineypsqrprimepsqrt=2nvt·12πe−2lnpsqrtvt22−v2t8
27
Express it in terms of log price rather than square root of price to get the liquidity fingerprint:
28
Expression 29: "L" left parenthesis, "p" Subscript, "l" "o" "g" , Baseline , right parenthesis equals StartFraction, 2 Over "n" "v" StartRoot, "t" , EndRoot , EndFraction times StartFraction, 1 Over StartRoot, 2 pi , EndRoot , EndFraction "e" Superscript, negative StartFraction, left parenthesis, StartNestedFraction, "p" Subscript, "l" "o" "g" , Baseline NestedOver "v" StartRoot, "t" , EndRoot , EndNestedFraction , right parenthesis squared Over 2 , EndFraction minus StartFraction, "v" squared "t" Over 8 , EndFraction , BaselineLplog=2nvt·12πe−plogvt22−v2t8
29
This turns out to be the normal curve with v*sqrt(t) as the standard deviation, scaled a bit:
30
Expression 31: "L" left parenthesis, "p" Subscript, "l" "o" "g" , Baseline , right parenthesis equals StartFraction, 2 Over "n" , EndFraction "e" Superscript, negative StartFraction, "v" squared "t" Over 8 , EndFraction , Baseline times normal distribution left parenthesis, 0 , "v" StartRoot, "t" , EndRoot , right parenthesis .pdf left parenthesis, "p" Subscript, "l" "o" "g" , Baseline , right parenthesisLplog=2ne−v2t8·normaldist0,vt.pdfplog