Loading...
Total Area = 15.7079632679
Save Copy
Desmos Logo
Log In
Sign Up
Expression 13: "B" Subscript, 1 , Baseline equals "D" Subscript, 1 , Baseline plus StartFraction, "s" Over 2 , EndFraction cosine left parenthesis, 60 , right parenthesis
B
1
=
D
1
+
s
2
c
o
s
6
0
equals
=
2.2 2 0 4 4 6 0 4 9 3 times 10 to the negative 16th power
2
.
2
2
0
4
4
6
0
4
9
3
×
1
0
−
1
6
13
Expression 14: "B" Subscript, 2 , Baseline equals "D" Subscript, 2 , Baseline plus StartFraction, "s" Over 2 , EndFraction sine left parenthesis, 60 , right parenthesis
B
2
=
D
2
+
s
2
s
i
n
6
0
equals
=
1.7 3 2 0 5 0 8 0 7 5 7
1
.
7
3
2
0
5
0
8
0
7
5
7
14
Expression 15: "E" Subscript, 1 , Baseline equals negative "D" Subscript, 1 , Baseline
E
1
=
−
D
1
equals
=
1
1
15
Expression 16: "E" Subscript, 2 , Baseline equals "D" Subscript, 2 , Baseline
E
2
=
D
2
equals
=
0
0
16
Expression 17: "C" Subscript, 1 , Baseline equals negative "A" Subscript, 1 , Baseline
C
1
=
−
A
1
equals
=
2
2
17
Expression 18: "C" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
C
2
=
A
2
equals
=
negative 1.7 3 2 0 5 0 8 0 7 5 7
−
1
.
7
3
2
0
5
0
8
0
7
5
7
18
Graphs
Graphs
Hide this folder from students.
19
Expression 20: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
domain t Minimum: 180
1
8
0
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
20
Expression 21: left parenthesis, "R" Subscript, 1 , Baseline cos "t" , "R" Subscript, 1 , Baseline sin "t" , right parenthesis
R
1
c
o
s
t
,
R
1
s
i
n
t
domain t Minimum: 0
0
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
21
Expression 22: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
domain t Minimum: 180
1
8
0
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
22
Expression 23: left parenthesis, "R" cos "t" , "R" sin 0 , right parenthesis
R
c
o
s
t
,
R
s
i
n
0
domain t Minimum: 180
1
8
0
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 360
3
6
0
23
Expression 24: polygon left parenthesis, "A" , "B" , "C" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
C
24
Expression 25: left parenthesis, "R" Subscript, 1 , Baseline cos "t" , "R" Subscript, 1 , Baseline sin "t" , right parenthesis
R
1
c
o
s
t
,
R
1
s
i
n
t
domain t Minimum: 0
0
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
25
Points
Points
Hide this folder from students.
26
39
powered by
powered by
O
A
B
C
D
E
4
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy