Loading...
Angle BDK = 90°
Save Copy
Desmos Logo
Log In
Sign Up
Expression 22: "C" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline equals 0
C
1
=
O
1
equals
=
0
0
22
Expression 23: "C" Subscript, 2 , Baseline equals "R" equals 6
C
2
=
R
equals
=
6
6
23
Expression 24: "D" Subscript, 1 , Baseline equals negative "B" Subscript, 1 , Baseline equals negative 3.8 5 6 7 2 5 6 5 8 1 2
D
1
=
−
B
1
equals
=
negative 3.8 5 6 7 2 5 6 5 8 1 2
−
3
.
8
5
6
7
2
5
6
5
8
1
2
24
Expression 25: "D" Subscript, 2 , Baseline equals "B" Subscript, 2 , Baseline equals 4.5 9 6 2 6 6 6 5 8 7 1
D
2
=
B
2
equals
=
4.5 9 6 2 6 6 6 5 8 7 1
4
.
5
9
6
2
6
6
6
5
8
7
1
25
Expression 26: "E" Subscript, 1 , Baseline equals negative "A" Subscript, 1 , Baseline equals negative 5.9 0 8 8 4 6 5 1 8 0 7
E
1
=
−
A
1
equals
=
negative 5.9 0 8 8 4 6 5 1 8 0 7
−
5
.
9
0
8
8
4
6
5
1
8
0
7
26
Expression 27: "E" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline equals 1.0 4 1 8 8 9 0 6 6
E
2
=
A
2
equals
=
1.0 4 1 8 8 9 0 6 6
1
.
0
4
1
8
8
9
0
6
6
27
Expression 28: "F" Subscript, 1 , Baseline equals "R" cosine left parenthesis, 90 plus 3 alpha , right parenthesis equals negative 5.1 9 6 1 5 2 4 2 2 7 1
F
1
=
R
c
o
s
9
0
+
3
α
equals
=
negative 5.1 9 6 1 5 2 4 2 2 7 1
−
5
.
1
9
6
1
5
2
4
2
2
7
1
28
Expression 29: "F" Subscript, 2 , Baseline equals "R" sine left parenthesis, 90 plus 3 alpha , right parenthesis equals negative 3
F
2
=
R
s
i
n
9
0
+
3
α
equals
=
negative 3
−
3
29
Expression 30: "G" Subscript, 1 , Baseline equals negative "H" Subscript, 1 , Baseline equals negative 2.0 5 2 1 2 0 8 5 9 9 5
G
1
=
−
H
1
equals
=
negative 2.0 5 2 1 2 0 8 5 9 9 5
−
2
.
0
5
2
1
2
0
8
5
9
9
5
30
Expression 31: "G" Subscript, 2 , Baseline equals "H" Subscript, 2 , Baseline equals negative 5.6 3 8 1 5 5 7 2 4 7 2
G
2
=
H
2
equals
=
negative 5.6 3 8 1 5 5 7 2 4 7 2
−
5
.
6
3
8
1
5
5
7
2
4
7
2
31
Expression 32: "H" Subscript, 1 , Baseline equals "R" cosine left parenthesis, 90 plus 5 alpha , right parenthesis equals 2.0 5 2 1 2 0 8 5 9 9 5
H
1
=
R
c
o
s
9
0
+
5
α
equals
=
2.0 5 2 1 2 0 8 5 9 9 5
2
.
0
5
2
1
2
0
8
5
9
9
5
32
Expression 33: "H" Subscript, 2 , Baseline equals "R" sine left parenthesis, 90 plus 5 alpha , right parenthesis equals negative 5.6 3 8 1 5 5 7 2 4 7 2
H
2
=
R
s
i
n
9
0
+
5
α
equals
=
negative 5.6 3 8 1 5 5 7 2 4 7 2
−
5
.
6
3
8
1
5
5
7
2
4
7
2
33
Expression 34: "J" Subscript, 1 , Baseline equals negative "F" Subscript, 1 , Baseline equals 5.1 9 6 1 5 2 4 2 2 7 1
J
1
=
−
F
1
equals
=
5.1 9 6 1 5 2 4 2 2 7 1
5
.
1
9
6
1
5
2
4
2
2
7
1
34
Expression 35: "J" Subscript, 2 , Baseline equals "F" Subscript, 2 , Baseline equals negative 3
J
2
=
F
2
equals
=
negative 3
−
3
35
Expression 36: "F" Subscript, 1 , Baseline plus "J" Subscript, 1 , Baseline minus "B" Subscript, 1 , Baseline equals negative 3.8 5 6 7 2 5 6 5 8 1 2
F
1
+
J
1
−
B
1
equals
=
negative 3.8 5 6 7 2 5 6 5 8 1 2
−
3
.
8
5
6
7
2
5
6
5
8
1
2
36
Expression 37: "L" Subscript, 1 , Baseline equals "K" Subscript, 1 , Baseline plus "S" cosine left parenthesis, 60 plus tan to the negative 1st power StartFraction, "J" Subscript, 2 , Baseline minus "K" Subscript, 2 , Baseline Over "J" Subscript, 1 , Baseline minus "K" Subscript, 1 , Baseline , EndFraction , right parenthesis equals 0.2 4 7 5 1 6 0 6 1 7 8 9
L
1
=
K
1
+
S
c
o
s
6
0
+
t
a
n
−
1
J
2
−
K
2
J
1
−
K
1
equals
=
0.2 4 7 5 1 6 0 6 1 7 8 9
0
.
2
4
7
5
1
6
0
6
1
7
8
9
37
Expression 38: "L" Subscript, 2 , Baseline equals "K" Subscript, 2 , Baseline plus "S" sine left parenthesis, 60 plus tan to the negative 1st power StartFraction, "J" Subscript, 2 , Baseline minus "K" Subscript, 2 , Baseline Over "J" Subscript, 1 , Baseline minus "K" Subscript, 1 , Baseline , EndFraction , right parenthesis equals 4.5 9 6 2 6 6 6 5 8 7 1
L
2
=
K
2
+
S
s
i
n
6
0
+
t
a
n
−
1
J
2
−
K
2
J
1
−
K
1
equals
=
4.5 9 6 2 6 6 6 5 8 7 1
4
.
5
9
6
2
6
6
6
5
8
7
1
38
Graphs
Graphs
Hide this folder from students.
39
Expression 40: "y" less than 35 Has graph. To audio trace, press ALT+T.
y
<
3
5
40
Expression 41: polygon left parenthesis, "J" , "K" , "L" , right parenthesis Has graph.
p
o
l
y
g
o
n
J
,
K
,
L
41
Expression 42: polygon left parenthesis, "J" , "K" , "L" , right parenthesis Has graph.
p
o
l
y
g
o
n
J
,
K
,
L
42
Expression 43: polygon left parenthesis, "A" , "B" , "D" , "B" , "C" , "D" , "K" , "D" , "E" , "F" , "H" , "F" , "G" , "H" , "J" , right parenthesis Has graph.
p
o
l
y
g
o
n
A
,
B
,
D
,
B
,
C
,
D
,
K
,
D
,
E
,
F
,
H
,
F
,
G
,
H
,
J
43
Points
Points
Hide this folder from students.
44
59
powered by
powered by
O
A
B
C
D
E
F
G
H
J
K
L
?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy