Loading...
X = AD = 1
Save Copy
Desmos Logo
Log In
Sign Up
Expression 14: "B" Subscript, 1 , Baseline equals StartFraction, "A" Subscript, 1 , Baseline plus "C" Subscript, 1 , Baseline Over 2 , EndFraction
B
1
=
A
1
+
C
1
2
equals
=
negative 0.3 8 2 4 5 5 4 7 9 3 4 8
−
0
.
3
8
2
4
5
5
4
7
9
3
4
8
14
Expression 15: StartFraction, "B" Subscript, 2 , Baseline Over "B" Subscript, 1 , Baseline minus "A" Subscript, 1 , Baseline , EndFraction equals StartFraction, "D" Subscript, 2 , Baseline Over "D" Subscript, 1 , Baseline minus "A" Subscript, 1 , Baseline , EndFraction
B
2
B
1
−
A
1
=
D
2
D
1
−
A
1
15
Expression 16: "B" Subscript, 2 , Baseline equals StartFraction, "D" Subscript, 2 , Baseline left parenthesis, "B" Subscript, 1 , Baseline minus "A" Subscript, 1 , Baseline , right parenthesis Over "D" Subscript, 1 , Baseline minus "A" Subscript, 1 , Baseline , EndFraction
B
2
=
D
2
B
1
−
A
1
D
1
−
A
1
equals
=
0.7 3 6 9 2 2 6 4 3 9 6 9
0
.
7
3
6
9
2
2
6
4
3
9
6
9
16
Expression 17: "C" Subscript, 1 , Baseline equals "R" equals 1
C
1
=
R
equals
=
1
1
17
Expression 18: "C" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline equals 0
C
2
=
O
2
equals
=
0
0
18
Expression 19: "D" Subscript, 1 , Baseline equals "R" cosine "C" Subscript, "O" "D" , Baseline
D
1
=
R
c
o
s
C
O
D
equals
=
negative 0.8 8 2 4 5 5 4 7 9 3 4 8
−
0
.
8
8
2
4
5
5
4
7
9
3
4
8
19
Expression 20: "D" Subscript, 2 , Baseline equals "R" sine "C" Subscript, "O" "D" , Baseline
D
2
=
R
s
i
n
C
O
D
equals
=
0.4 7 0 3 9 5 9 2 5 7 5 7
0
.
4
7
0
3
9
5
9
2
5
7
5
7
20
Expression 21: "E" Subscript, 1 , Baseline equals negative "R" equals negative 1
E
1
=
−
R
equals
=
negative 1
−
1
21
Expression 22: "E" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline equals 0
E
2
=
O
2
equals
=
0
0
22
Expression 23: "L" Subscript, 2 , Baseline equals "O" Subscript, 2 , Baseline equals 0
L
2
=
O
2
equals
=
0
0
23
Graphs
Graphs
Hide this folder from students.
24
Expression 25: "y" less than 25 Has graph. To audio trace, press ALT+T.
y
<
2
5
25
Expression 26: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis Has graph.
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
26
Expression 27: polygon left parenthesis, "E" , "C" , "D" , "E" , "A" , "B" , "C" , right parenthesis Has graph.
p
o
l
y
g
o
n
E
,
C
,
D
,
E
,
A
,
B
,
C
27
Points
Points
Hide this folder from students.
28
42
powered by
powered by
O
A
E
B
C
D
X
R = 1
BC = AB
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy