Avaldis 8: "y" equals sine left parenthesis, "x" plus StartFraction, 11 pi Over 6 , EndFraction , right parenthesisy=sinx+11π6
8
Using arcsine gives you *only one* solution, in this case it's x=5π/3
Peitke see kaust õpilaste eest.
9
Avaldis 10: "y" equals arc sine left parenthesis, 1 half , right parenthesisy=arcsin12
equals=
0.5 2 3 5 9 8 7 7 5 5 9 80.523598775598
10
Avaldis 11: "y" equals "x" plus StartFraction, 11 pi Over 6 , EndFractiony=x+11π6
11
Since we know that sine repeats in *periods of 2π*, we can find many other solutions that way
Peitke see kaust õpilaste eest.
12
Avaldis 13: "y" equals "x" plus StartFraction, 11 pi Over 6 , EndFraction plus "n" times 2 piy=x+11π6+n·2π
13
Avaldis 14: "n" equals 4n=4
negative 5−5
55
14
Since we know that sine is *symmetric to x=π/2*, you can find even more solutions by reflection like this
Peitke see kaust õpilaste eest.
15
Avaldis 16: "y" equals pi minus left parenthesis, "x" plus StartFraction, 11 pi Over 6 , EndFraction , right parenthesis plus "n" times 2 piy=π−x+11π6+n·2π