Uttryck 3: "y" equals Start sum from "n" equals 0 to "x" minus 1, end sum, left parenthesis, left parenthesis, 1 minus StartFraction, nCr left parenthesis, 47 , 5 , right parenthesis Over nCr left parenthesis, 50 , 5 , right parenthesis , EndFraction , right parenthesis times StartFraction, nCr left parenthesis, 50 minus "x" , 5 , right parenthesis Over nCr left parenthesis, 50 , 5 , right parenthesis , EndFraction times StartFraction, nCr left parenthesis, "x" , "n" , right parenthesis times nCr left parenthesis, 45 minus "x" , 10 minus "n" , right parenthesis Over nCr left parenthesis, 45 , 10 , right parenthesis , EndFraction times left parenthesis, 1 minus StartFraction, nCr left parenthesis, 35 minus left parenthesis, "x" minus "n" , right parenthesis , 2 , right parenthesis Over nCr left parenthesis, 35 , 2 , right parenthesis , EndFraction , right parenthesis , right parenthesis Har graf. För att ljudspåra, tryck ALT+T.y=x−1∑n=01−nCr47,5nCr50,5·nCr50−x,5nCr50,5·nCrx,n·nCr45−x,10−nnCr45,10·1−nCr35−x−n,2nCr35,2
3
"x"x
Start sum from "n" equals 0 to "x" minus 1, end sum, left parenthesis, left parenthesis, 1 minus StartFraction, nCr left parenthesis, 47 , 5 , right parenthesis Over nCr left parenthesis, 50 , 5 , right parenthesis , EndFraction , right parenthesis times StartFraction, nCr left parenthesis, 50 minus "x" , 5 , right parenthesis Over nCr left parenthesis, 50 , 5 , right parenthesis , EndFraction times StartFraction, nCr left parenthesis, "x" , "n" , right parenthesis times nCr left parenthesis, 45 minus "x" , 10 minus "n" , right parenthesis Over nCr left parenthesis, 45 , 10 , right parenthesis , EndFraction times left parenthesis, 1 minus StartFraction, nCr left parenthesis, 35 minus left parenthesis, "x" minus "n" , right parenthesis , 2 , right parenthesis Over nCr left parenthesis, 35 , 2 , right parenthesis , EndFraction , right parenthesis , right parenthesis Har graf. För att ljudspåra, tryck ALT+T.x−1∑n=01−nCr47,5nCr50,5·nCr50−x,5nCr50,5·nCrx,n·nCr45−x,10−nnCr45,10·1−nCr35−x−n,2nCr35,2
negative 2−2
r1c2: 00
r1c3:
negative 1−1
r2c2: 00
r2c3:
00
r3c2: 00
r3c3:
11
r4c2: 0.0 1 1 0 4 0 8 1 60.011040816
r4c3:
22
r5c2: 0.0 1 9 6 0 3 0 8 20.019603082
r5c3:
33
r6c2: 0.0 2 6 0 3 8 8 6 40.026038864
r6c3:
r7c2:
r7c3:
4
Uttryck 5: "y" equals Start sum from "n" equals 0 to "x" minus 1, end sum, left parenthesis, left parenthesis, 1 minus StartFraction, nCr left parenthesis, 57 , 5 , right parenthesis Over nCr left parenthesis, 60 , 5 , right parenthesis , EndFraction , right parenthesis times StartFraction, nCr left parenthesis, 60 minus "x" , 5 , right parenthesis Over nCr left parenthesis, 60 , 5 , right parenthesis , EndFraction times StartFraction, nCr left parenthesis, "x" , "n" , right parenthesis times nCr left parenthesis, 55 minus "x" , 10 minus "n" , right parenthesis Over nCr left parenthesis, 55 , 10 , right parenthesis , EndFraction times left parenthesis, 1 minus StartFraction, nCr left parenthesis, 45 minus left parenthesis, "x" minus "n" , right parenthesis , 2 , right parenthesis Over nCr left parenthesis, 45 , 2 , right parenthesis , EndFraction , right parenthesis , right parenthesis Har graf. För att ljudspåra, tryck ALT+T.y=x−1∑n=01−nCr57,5nCr60,5·nCr60−x,5nCr60,5·nCrx,n·nCr55−x,10−nnCr55,10·1−nCr45−x−n,2nCr45,2
5
"x"x
Start sum from "n" equals 0 to "x" minus 1, end sum, left parenthesis, left parenthesis, 1 minus StartFraction, nCr left parenthesis, 57 , 5 , right parenthesis Over nCr left parenthesis, 60 , 5 , right parenthesis , EndFraction , right parenthesis times StartFraction, nCr left parenthesis, 60 minus "x" , 5 , right parenthesis Over nCr left parenthesis, 60 , 5 , right parenthesis , EndFraction times StartFraction, nCr left parenthesis, "x" , "n" , right parenthesis times nCr left parenthesis, 55 minus "x" , 10 minus "n" , right parenthesis Over nCr left parenthesis, 55 , 10 , right parenthesis , EndFraction times left parenthesis, 1 minus StartFraction, nCr left parenthesis, 45 minus left parenthesis, "x" minus "n" , right parenthesis , 2 , right parenthesis Over nCr left parenthesis, 45 , 2 , right parenthesis , EndFraction , right parenthesis , right parenthesis Har graf. För att ljudspåra, tryck ALT+T.x−1∑n=01−nCr57,5nCr60,5·nCr60−x,5nCr60,5·nCrx,n·nCr55−x,10−nnCr55,10·1−nCr45−x−n,2nCr45,2
negative 2−2
r1c2: 00
r1c3:
negative 1−1
r2c2: 00
r2c3:
00
r3c2: 00
r3c3:
11
r4c2: 0.0 0 7 7 7 8 1 0 2 50.0077781025
r4c3:
22
r5c2: 0.0 1 4 1 0 6 0 50.01410605
r5c3:
33
r6c2: 0.0 1 9 1 5 4 3 1 60.019154316
r6c3:
r7c2:
r7c3:
6
7
driven av
driven av
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
funktioner
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
eller
för att spara dina grafer!
Skapa en ny graf
Exempel
Linjer: Linjära funktioner
exempel
Linjer: Enpunktsformeln
exempel
Linjer: Tvåpunktsformeln
exempel
Parabler: Standardform
exempel
Parabler: Vertexform
exempel
Parabler: Standardform och tangens
exempel
Trigonometri: Våglängd och amplitud
exempel
Trigonometri: Fas
exempel
Trigonometri: Interferens
exempel
Trigonometri: Enhetscirkeln
exempel
Kägelsnitt: Cirkel
exempel
Kägelsnitt: Parabel och fokus
exempel
Kägelsnitt: Ellips med fokus
exempel
Kägelsnitt: Hyperbel
exempel
Polära ekvationer: Ros
exempel
Polära ekvationer: Logaritmisk spiral
exempel
Polära ekvationer: Limacon
exempel
Polära ekvationer: Kägelsnitt
exempel
Parameterform: Introduktion
exempel
Parameterform: Cykloid
exempel
Transformation: Avbildning av en funktion
exempel
Transformation: Förändra skalan på en funktion
exempel
Transformation: Invers av en funktion
exempel
Statistik: Linjär regression
exempel
Statistik: Anscombs kvartett
exempel
Statistik: Polynom av 4:e grad
exempel
Listor: Sinuskurvor
exempel
Listor: Stickandet av kurvor
exempel
Listor: Rita en graf från en lista med punkter
exempel
Infinitesimalkalkyl: Derivata
exempel
Infinitesimalkalkyl: Sekantlinje
exempel
Infinitesimalkalkyl: Tangentlinje
exempel
Infinitesimalkalkyl: Taylorutveckling av sin(x)
exempel
Infinitesimalkalkyl: Integraler
exempel
Infinitesimalkalkyl: Integraler med justerbara gränser