Ekspresi 30: "r" equals negative StartFraction, "a" Subscript, 5 , Baseline "a" Subscript, 3 , Baseline Over "h" , EndFraction minus StartFraction, "b" Subscript, 5 , Baseline "b" Subscript, 3 , Baseline Over "h" , EndFraction minus StartFraction, "c" Subscript, 5 , Baseline "c" Subscript, 3 , Baseline Over "h" , EndFractionr=−a5a3h−b5b3h−c5c3h
30
Ekspresi 31: "s" equals StartFraction, "a" Subscript, 5 , Baseline "a" Subscript, 2 , Baseline Over "g" , EndFraction plus StartFraction, "b" Subscript, 5 , Baseline "b" Subscript, 2 , Baseline Over "g" , EndFraction plus StartFraction, "c" Subscript, 5 , Baseline "c" Subscript, 2 , Baseline Over "g" , EndFractions=a5a2g+b5b2g+c5c2g
31
Ekspresi 32: "u" equals negative StartFraction, "a" Subscript, 5 , Baseline "a" Subscript, 1 , Baseline Over "f" , EndFraction minus StartFraction, "b" Subscript, 5 , Baseline "b" Subscript, 1 , Baseline Over "f" , EndFraction minus StartFraction, "c" Subscript, 5 , Baseline "c" Subscript, 1 , Baseline Over "f" , EndFractionu=−a5a1f−b5b1f−c5c1f
32
Ekspresi 33: "r" "x" "y" plus "s" "x" plus "u" "y" equals 0rxy+sx+uy=0
33
Ekspresi 34: left parenthesis, "r" plus "s" , right parenthesis "x" plus left parenthesis, "r" plus "u" , right parenthesis "y" plus left parenthesis, "s" plus "u" , right parenthesis equals 0r+sx+r+uy+s+u=0
Ekspresi 49: left parenthesis, phi Subscript, 2 , Baseline minus phi Subscript, 3 , Baseline , right parenthesis "x" plus left parenthesis, phi Subscript, 3 , Baseline minus phi Subscript, 1 , Baseline , right parenthesis "y" plus left parenthesis, phi Subscript, 1 , Baseline minus phi Subscript, 2 , Baseline , right parenthesis equals 0ϕ2−ϕ3x+ϕ3−ϕ1y+ϕ1−ϕ2=0
49
Ekspresi 50: left parenthesis, phi Subscript, 2 , Baseline minus "p" Subscript, 3 , Baseline , right parenthesis "x" plus left parenthesis, "p" Subscript, 3 , Baseline minus "p" Subscript, 1 , Baseline , right parenthesis "y" plus left parenthesis, "p" Subscript, 1 , Baseline minus phi Subscript, 2 , Baseline , right parenthesis equals 0ϕ2−p3x+p3−p1y+p1−ϕ2=0
50
Ekspresi 51: "q" Subscript, 1 , Baseline equals left parenthesis, phi Subscript, 2 , Baseline minus phi Subscript, 3 , Baseline , right parenthesisq1=ϕ2−ϕ3
51
Ekspresi 52: "t" Subscript, 1 , Baseline equals left parenthesis, phi Subscript, 3 , Baseline minus phi Subscript, 1 , Baseline , right parenthesist1=ϕ3−ϕ1
52
Ekspresi 53: "v" Subscript, 1 , Baseline equals left parenthesis, phi Subscript, 1 , Baseline minus phi Subscript, 2 , Baseline , right parenthesisv1=ϕ1−ϕ2
53
Ekspresi 54: "q" Subscript, 2 , Baseline equals left parenthesis, phi Subscript, 2 , Baseline minus "p" Subscript, 3 , Baseline , right parenthesisq2=ϕ2−p3
54
Ekspresi 55: "t" Subscript, 2 , Baseline equals left parenthesis, "p" Subscript, 3 , Baseline minus "p" Subscript, 1 , Baseline , right parenthesist2=p3−p1
55
Ekspresi 56: "v" Subscript, 2 , Baseline equals left parenthesis, "p" Subscript, 1 , Baseline minus phi Subscript, 2 , Baseline , right parenthesisv2=p1−ϕ2
56
Ekspresi 57: "q" Subscript, 1 , Baseline "y" plus "t" Subscript, 1 , Baseline "x" plus "v" Subscript, 1 , Baseline "x" "y" equals 0q1y+t1x+v1xy=0
57
Ekspresi 58: "q" Subscript, 2 , Baseline "y" plus "t" Subscript, 2 , Baseline "x" plus "v" Subscript, 2 , Baseline "x" "y" equals 0q2y+t2x+v2xy=0
58
Ekspresi 59: "q" Subscript, 1 , Baseline "L" Subscript, 13 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "g" "L" Subscript, 12 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "h" plus "t" Subscript, 1 , Baseline "L" Subscript, 23 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "f" "L" Subscript, 12 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "h" plus "v" Subscript, 1 , Baseline "L" Subscript, 23 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "f" "L" Subscript, 13 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "g" equals 0q1L13x,y,1gL12x,y,1h+t1L23x,y,1fL12x,y,1h+v1L23x,y,1fL13x,y,1g=0
59
Ekspresi 60: "q" Subscript, 2 , Baseline "L" Subscript, 13 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "g" "L" Subscript, 12 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "h" plus "t" Subscript, 2 , Baseline "L" Subscript, 23 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "f" "L" Subscript, 12 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "h" plus "v" Subscript, 2 , Baseline "L" Subscript, 23 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "f" "L" Subscript, 13 , Baseline left parenthesis, "x" , "y" , 1 , right parenthesis "g" equals 0q2L13x,y,1gL12x,y,1h+t2L23x,y,1fL12x,y,1h+v2L23x,y,1fL13x,y,1g=0
60
61
dipersembahkan oleh
dipersembahkan oleh
"x"x
"y"y
"a" squareda2
"a" Superscript, "b" , Baselineab
77
88
99
over÷
fungsi
((
))
less than<
greater than>
44
55
66
times×
| "a" ||a|
,,
less than or equal to≤
greater than or equal to≥
11
22
33
negative−
A B C
StartRoot, , EndRoot
piπ
00
..
equals=
positive+
atau
untuk menyimpan grafikmu!
Grafik Kosong Baru
Contoh
Garis: Bentuk Perpotongan Kemiringan
contoh
Garis: Bentuk Titik Kemiringan
contoh
Garis: Bentuk Dua Titik
contoh
Parabola: Bentuk Standar
contoh
Parabola: Bentuk Verteks
contoh
Parabola: Bentuk Standar + Tangen
contoh
Trigonometri: Periode dan Amplitudo
contoh
Trigonometri: Fase
contoh
Trigonometri: Interferensi Gelombang
contoh
Trigonometri: Lingkaran Satuan
contoh
Irisan Kerucut: Lingkaran
contoh
Irisan Kerucut: Parabola dan Fokus
contoh
Irisan Kerucut: Elips dengan Fokus
contoh
Irisan Kerucut: Hiperbola
contoh
Kutub: Mawar
contoh
Kutub: Spiral Logaritma
contoh
Kutub: Limacon
contoh
Kutub: Irisan Kerucut
contoh
Parametrik: Pengantar
contoh
Parametrik: Sikloid
contoh
Transformasi: Menafsirkan Fungsi
contoh
Transformasi: Mengubah Skala Fungsi
contoh
Transformasi: Invers Fungsi
contoh
Statistik: Regresi Linear
contoh
Statistik: Kuartet Anscombe
contoh
Statistik: Polinomial Orde 4
contoh
Daftar: Keluarga Kurva Sinus
contoh
Daftar: Jalinan Kurva
contoh
Daftar: Menggambar Daftar Titik
contoh
Kalkulus: Turunan
contoh
Kalkulus: Garis Sekan
contoh
Kalkulus: Garis Tangen
contoh
Kalkulus: Deret Taylor sin(x)
contoh
Kalkulus: Integral
contoh
Kalkulus: Integral dengan batas yang dapat disesuaikan