Loading...
Green Circle Area = ?
Save Copy
Desmos Logo
Log In
Sign Up
Expression 6: "L" Subscript, 2 , Baseline equals left bracket, 0 , StartFraction, pi Over 2 , EndFraction ... tau , right bracket
L
2
=
0
,
π
2
.
.
.
τ
equals
=
0
0
1.5 7 0 7 9 6 3 2 6 7 9
1
.
5
7
0
7
9
6
3
2
6
7
9
3.1 4 1 5 9 2 6 5 3 5 9
3
.
1
4
1
5
9
2
6
5
3
5
9
4.7 1 2 3 8 8 9 8 0 3 8
4
.
7
1
2
3
8
8
9
8
0
3
8
6.2 8 3 1 8 5 3 0 7 1 8
6
.
2
8
3
1
8
5
3
0
7
1
8
6
Expression 7: left parenthesis, "R" Subscript, 1 , Baseline cos "L" Subscript, 2 , Baseline plus "R" Subscript, 1 , Baseline cos "t" , "R" Subscript, 1 , Baseline sin "L" Subscript, 2 , Baseline plus "R" Subscript, 1 , Baseline sin "t" , right parenthesis
R
1
c
o
s
L
2
+
R
1
c
o
s
t
,
R
1
s
i
n
L
2
+
R
1
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: tau
τ
7
Expression 8: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: tau
τ
8
Hidden Label: left parenthesis, "R" cos "L" Subscript, 1 , Baseline , "R" sin "L" Subscript, 1 , Baseline , right parenthesis
R
c
o
s
L
1
,
R
s
i
n
L
1
Label
equals
=
left parenthesis, 0.3 9 8 9 , 0.3 9 8 9 , right parenthesis
0
.
3
9
8
9
,
0
.
3
9
8
9
left parenthesis, negative 0.3 9 8 9 , 0.3 9 8 9 , right parenthesis
−
0
.
3
9
8
9
,
0
.
3
9
8
9
left parenthesis, negative 0.3 9 8 9 , negative 0.3 9 8 9 , right parenthesis
−
0
.
3
9
8
9
,
−
0
.
3
9
8
9
left parenthesis, 0.3 9 8 9 , negative 0.3 9 8 9 , right parenthesis
0
.
3
9
8
9
,
−
0
.
3
9
8
9
left parenthesis, 0.3 9 8 9 , 0.3 9 8 9 , right parenthesis
0
.
3
9
8
9
,
0
.
3
9
8
9
9
Hidden Label: left parenthesis, "R" Subscript, 1 , Baseline cos "L" Subscript, 2 , Baseline , "R" Subscript, 1 , Baseline sin "L" Subscript, 2 , Baseline , right parenthesis
R
1
c
o
s
L
2
,
R
1
s
i
n
L
2
Label
equals
=
left parenthesis, 0.3 9 8 9 , 0 , right parenthesis
0
.
3
9
8
9
,
0
left parenthesis, 0 , 0.3 9 8 9 , right parenthesis
0
,
0
.
3
9
8
9
left parenthesis, negative 0.3 9 8 9 , 0 , right parenthesis
−
0
.
3
9
8
9
,
0
left parenthesis, 0 , negative 0.3 9 8 9 , right parenthesis
0
,
−
0
.
3
9
8
9
left parenthesis, 0.3 9 8 9 , 0 , right parenthesis
0
.
3
9
8
9
,
0
10
Expression 11: left parenthesis, "R" Subscript, 2 , Baseline cos "t" , "R" Subscript, 2 , Baseline sin "t" , right parenthesis
R
2
c
o
s
t
,
R
2
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: tau
τ
11
12
powered by
powered by
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy