FDWK p66-67 #32 Using a Graph, Table, and Substitution to find limits
Expresión 12: "x" Subscript, 1 , Baselinex1
12
Expresión 13: "f" left parenthesis, "x" Subscript, 1 , Baseline , right parenthesisfx1
13
If a function is continuous at x1, then limit at x1 is the value of f(x1), but this function is NOT continuous at x = -2 and x - 2
14
So in this case the limit would be f(x1) if continuous, but f(x) is NOT defined at x = 2
15
Expresión 16: "f" left parenthesis, "x" Subscript, 1 , Baseline , right parenthesisfx1
16
Expresión 17: left parenthesis, "x" Subscript, 1 , Baseline , "f" left parenthesis, "x" Subscript, 1 , Baseline , right parenthesis , right parenthesisx1,fx1
17
Show Table
Ocultar esta carpeta de los estudiantes.
18
This table should show that f(x) approaches the limit as x approaches x1 if the limit is f(x1)
19
"x" Subscript, 2 , Baselinex2
"f" left parenthesis, "x" Subscript, 2 , Baseline , right parenthesisfx2
negative 1 plus "x" Subscript, 1 , Baseline−1+x1
negative 0.1 plus "x" Subscript, 1 , Baseline−0.1+x1
negative 0.0 1 plus "x" Subscript, 1 , Baseline−0.01+x1
negative 0.0 0 1 plus "x" Subscript, 1 , Baseline−0.001+x1
negative 0.0 0 0 1 plus "x" Subscript, 1 , Baseline−0.0001+x1
negative 0.0 0 0 0 1 plus "x" Subscript, 1 , Baseline−0.00001+x1
0.0 0 0 0 1 plus "x" Subscript, 1 , Baseline0.00001+x1
0.0 0 0 1 plus "x" Subscript, 1 , Baseline0.0001+x1
0.0 0 1 plus "x" Subscript, 1 , Baseline0.001+x1
0.0 1 plus "x" Subscript, 1 , Baseline0.01+x1
0.1 plus "x" Subscript, 1 , Baseline0.1+x1
1 plus "x" Subscript, 1 , Baseline1+x1
20
Show hole
Ocultar esta carpeta de los estudiantes.
21
Expresión 22: left parenthesis, 0 , 2 , right parenthesis0,2