Expression 10: "k" equals left bracket, 0...1 6 0 , right bracketk=0...160
equals=
00
11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
161 element list
10
Hidden Label: left parenthesis, "k" , "P" Subscript, "D" , Baseline left parenthesis, "k" , right parenthesis , right parenthesisk,PDk
Label
equals=
left parenthesis, 0 , 0.0 0 0 0 2 3 7 1 , right parenthesis0,0.00002371
left parenthesis, 1 , 0.0 0 0 2 6 1 6 , right parenthesis1,0.0002616
left parenthesis, 2 , 0.0 0 1 4 3 3 , right parenthesis2,0.001433
left parenthesis, 3 , 0.0 0 5 2 0 1 , right parenthesis3,0.005201
left parenthesis, 4 , 0.0 1 4 0 6 , right parenthesis4,0.01406
left parenthesis, 5 , 0.0 3 0 2 , right parenthesis5,0.0302
left parenthesis, 6 , 0.0 5 3 7 , right parenthesis6,0.0537
left parenthesis, 7 , 0.0 8 1 2 9 , right parenthesis7,0.08129
left parenthesis, 8 , 0.1 0 6 9 , right parenthesis8,0.1069
left parenthesis, 9 , 0.1 2 4 2 , right parenthesis9,0.1242
left parenthesis, 10 , 0.1 2 8 9 , right parenthesis10,0.1289
left parenthesis, 11 , 0.1 2 0 7 , right parenthesis11,0.1207
left parenthesis, 12 , 0.1 0 3 , right parenthesis12,0.103
left parenthesis, 13 , 0.0 8 0 4 9 , right parenthesis13,0.08049
left parenthesis, 14 , 0.0 5 8 , right parenthesis14,0.058
161 element list
11
Using complements to get P(D)
12
Expression 13: "p" equals 1 minus Start sum from "n" equals 0 to 30, end sum, "P" Subscript, "D" , Baseline left parenthesis, "n" , right parenthesisp=1−30∑n=0PDn
equals=
3.1 3 2 7 7 9 2 6 9 3 times 10 to the negative 8th power3.1327792693×10−8
13
Without complements. Seems like precision errors start to appear at the 7th significant digit?
14
Expression 15: Start sum from "n" equals 31 to 160, end sum, "P" Subscript, "D" , Baseline left parenthesis, "n" , right parenthesis160∑n=31PDn
equals=
3.1 3 2 7 7 9 6 5 8 7 times 10 to the negative 8th power3.1327796587×10−8
15
The "observed" outcome of seeing at least 31 DnCs this season has a probability of slightly over about 1 in 32 million....
16
Expression 17: StartFraction, 1 Over "p" , EndFraction1p