Doing this because D has a discrete distribution:
9
equals
1
2
3
4
5
6
7
8
9
10
11
12
13
14
10
equals
left parenthesis, 1 , 0.0 0 0 2 6 1 6 , right parenthesis
left parenthesis, 2 , 0.0 0 1 4 3 3 , right parenthesis
left parenthesis, 3 , 0.0 0 5 2 0 1 , right parenthesis
left parenthesis, 4 , 0.0 1 4 0 6 , right parenthesis
left parenthesis, 5 , 0.0 3 0 2 , right parenthesis
left parenthesis, 6 , 0.0 5 3 7 , right parenthesis
left parenthesis, 7 , 0.0 8 1 2 9 , right parenthesis
left parenthesis, 8 , 0.1 0 6 9 , right parenthesis
left parenthesis, 9 , 0.1 2 4 2 , right parenthesis
left parenthesis, 10 , 0.1 2 8 9 , right parenthesis
left parenthesis, 11 , 0.1 2 0 7 , right parenthesis
left parenthesis, 12 , 0.1 0 3 , right parenthesis
left parenthesis, 13 , 0.0 8 0 4 9 , right parenthesis
left parenthesis, 14 , 0.0 5 8 , right parenthesis
11
Using complements to get P(D)
12
equals
13
Without complements. Seems like precision errors start to appear at the 7th significant digit?
14
equals
15
The "observed" outcome of seeing at least 31 DnCs this season has a probability of slightly over about 1 in 32 million....
16
equals
17
18
powered by
powered by
New Blank Graph
Examples