Loading...
a / b = 1.61803398875
Save Copy
Desmos Logo
Log In
Sign Up
Expression 17: "C" Subscript, 1 , Baseline equals "R"
C
1
=
R
equals
=
10
1
0
17
Expression 18: "C" Subscript, 2 , Baseline equals "R"
C
2
=
R
equals
=
10
1
0
18
Expression 19: "D" Subscript, 1 , Baseline equals "O" Subscript, 1 , Baseline
D
1
=
O
1
equals
=
0
0
19
Expression 20: "D" Subscript, 2 , Baseline equals "R"
D
2
=
R
equals
=
10
1
0
20
Expression 21: "E" Subscript, 1 , Baseline equals negative StartFraction, "R" Over 2 , EndFraction
E
1
=
−
R
2
equals
=
negative 5
−
5
21
Expression 22: "E" Subscript, 2 , Baseline equals "R"
E
2
=
R
equals
=
10
1
0
22
Expression 23: "F" Subscript, 1 , Baseline equals negative "R"
F
1
=
−
R
equals
=
negative 10
−
1
0
23
Expression 24: "F" Subscript, 2 , Baseline equals "R"
F
2
=
R
equals
=
10
1
0
24
Expression 25: "M" Subscript, 1 , Baseline equals "R" cosine "B" Subscript, "O" "M" , Baseline
M
1
=
R
c
o
s
B
O
M
equals
=
negative 4.4 7 2 1 3 5 9 5 5
−
4
.
4
7
2
1
3
5
9
5
5
25
Expression 26: "M" Subscript, 2 , Baseline equals "R" sine "B" Subscript, "O" "M" , Baseline
M
2
=
R
s
i
n
B
O
M
equals
=
8.9 4 4 2 7 1 9 1
8
.
9
4
4
2
7
1
9
1
26
Graphs
Graphs
Hide this folder from students.
27
Expression 28: "y" less than 25
y
<
2
5
28
Expression 29: left parenthesis, "R" cos "t" , "R" sin "t" , right parenthesis
R
c
o
s
t
,
R
s
i
n
t
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
domain t Maximum: 180
1
8
0
29
Expression 30: polygon left parenthesis, "A" , "B" , "M" , right parenthesis
p
o
l
y
g
o
n
A
,
B
,
M
30
Expression 31: left parenthesis, "t" StartFraction, 1 Over StartRoot, 2 , EndRoot , EndFraction cos 45 , StartFraction, 1 Over StartRoot, 2 , EndRoot , EndFraction sin 45 , right parenthesis
t
1
2
c
o
s
4
5
,
1
2
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
31
Expression 32: left parenthesis, StartFraction, 1 Over StartRoot, 2 , EndRoot , EndFraction cos 45 , "t" StartFraction, 1 Over StartRoot, 2 , EndRoot , EndFraction sin 45 , right parenthesis
1
2
c
o
s
4
5
,
t
1
2
s
i
n
4
5
0
0
domain t Minimum:
less than or equal to "t" less than or equal to
≤
t
≤
1
1
domain t Maximum:
32
Expression 33: polygon left parenthesis, "A" , "M" , "B" , "A" , "B" , "C" , "E" , "O" , "D" , "O" , "E" , "F" , right parenthesis
p
o
l
y
g
o
n
A
,
M
,
B
,
A
,
B
,
C
,
E
,
O
,
D
,
O
,
E
,
F
33
Points
Points
Hide this folder from students.
34
49
powered by
powered by
O
A
B
C
D
E
F
M
b
a
|
|
Ratio of a / b = ?
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy