Loading...
A ( ABCD ) = 2 X Y + Y ²
Save Copy
Desmos Logo
Log In
Sign Up
Expression 20: "A" Subscript, 1 , Baseline equals StartRoot, 0 , EndRoot
A
1
=
0
equals
=
0
0
20
Expression 21: "A" Subscript, 2 , Baseline equals StartRoot, 0 , EndRoot
A
2
=
0
equals
=
0
0
21
Expression 22: "B" Subscript, 1 , Baseline equals StartRoot, 0 , EndRoot
B
1
=
0
equals
=
0
0
22
Expression 23: "B" Subscript, 2 , Baseline equals "s"
B
2
=
s
equals
=
10
1
0
23
Expression 24: "C" Subscript, 1 , Baseline equals "s"
C
1
=
s
equals
=
10
1
0
24
Expression 25: "C" Subscript, 2 , Baseline equals "s"
C
2
=
s
equals
=
10
1
0
25
Expression 26: "D" Subscript, 1 , Baseline equals "s"
D
1
=
s
equals
=
10
1
0
26
Expression 27: "D" Subscript, 2 , Baseline equals StartRoot, 0 , EndRoot
D
2
=
0
equals
=
0
0
27
Expression 28: "F" Subscript, 1 , Baseline equals "s"
F
1
=
s
equals
=
10
1
0
28
Expression 29: "F" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline minus "X"
F
2
=
C
2
−
X
equals
=
4.8 3 3
4
.
8
3
3
29
Expression 30: "G" Subscript, 1 , Baseline equals "s"
G
1
=
s
equals
=
10
1
0
30
Expression 31: "G" Subscript, 2 , Baseline equals "C" Subscript, 2 , Baseline minus StartFraction, "X" Over 2 , EndFraction
G
2
=
C
2
−
X
2
equals
=
7.4 1 6 5
7
.
4
1
6
5
31
Expression 32: "m" Subscript, 1 , Baseline equals tangent left parenthesis, StartFraction, "A" Subscript, "B" "F" , Baseline Over 2 , EndFraction minus 90 , right parenthesis
m
1
=
t
a
n
A
B
F
2
−
9
0
equals
=
negative 1.6 4 2 3 0 1 5 6 8 0 5
−
1
.
6
4
2
3
0
1
5
6
8
0
5
32
Expression 33: "y" equals "m" Subscript, 1 , Baseline left parenthesis, "x" minus "B" Subscript, 1 , Baseline , right parenthesis plus "B" Subscript, 2 , Baseline
y
=
m
1
x
−
B
1
+
B
2
33
Expression 34: "y" equals "A" Subscript, 2 , Baseline
y
=
A
2
equals
=
0
0
34
Expression 35: "m" Subscript, 1 , Baseline left parenthesis, "E" Subscript, 1 , Baseline minus "B" Subscript, 1 , Baseline , right parenthesis plus "B" Subscript, 2 , Baseline tilde "E" Subscript, 2 , Baseline
m
1
E
1
−
B
1
+
B
2
~
E
2
35
Expression 36: "E" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
E
2
=
A
2
equals
=
0
0
36
Expression 37: "H" Subscript, 1 , Baseline equals StartFraction, "E" Subscript, 1 , Baseline Over 2 , EndFraction
H
1
=
E
1
2
equals
=
3.0 4 4 5 0 7 8 4 0 2 6
3
.
0
4
4
5
0
7
8
4
0
2
6
37
Expression 38: "H" Subscript, 2 , Baseline equals "A" Subscript, 2 , Baseline
H
2
=
A
2
equals
=
0
0
38
Graphs
Graphs
Hide this folder from students.
39
Points
Points
Hide this folder from students.
43
57
powered by
powered by
A
B
C
D
E
F
X
Y
"x"
x
"y"
y
"a" squared
a
2
"a" Superscript, "b" , Baseline
a
b
7
7
8
8
9
9
over
÷
functions
(
(
)
)
less than
<
greater than
>
4
4
5
5
6
6
times
×
| "a" |
|
a
|
,
,
less than or equal to
≤
greater than or equal to
≥
1
1
2
2
3
3
negative
−
A B C
StartRoot, , EndRoot
pi
π
0
0
.
.
equals
=
positive
+
Log In
or
Sign Up
to save your graphs!
New Blank Graph
Examples
Lines: Slope Intercept Form
example
Lines: Point Slope Form
example
Lines: Two Point Form
example
Parabolas: Standard Form
example
Parabolas: Vertex Form
example
Parabolas: Standard Form + Tangent
example
Trigonometry: Period and Amplitude
example
Trigonometry: Phase
example
Trigonometry: Wave Interference
example
Trigonometry: Unit Circle
example
Conic Sections: Circle
example
Conic Sections: Parabola and Focus
example
Conic Sections: Ellipse with Foci
example
Conic Sections: Hyperbola
example
Polar: Rose
example
Polar: Logarithmic Spiral
example
Polar: Limacon
example
Polar: Conic Sections
example
Parametric: Introduction
example
Parametric: Cycloid
example
Transformations: Translating a Function
example
Transformations: Scaling a Function
example
Transformations: Inverse of a Function
example
Statistics: Linear Regression
example
Statistics: Anscombe's Quartet
example
Statistics: 4th Order Polynomial
example
Lists: Family of sin Curves
example
Lists: Curve Stitching
example
Lists: Plotting a List of Points
example
Calculus: Derivatives
example
Calculus: Secant Line
example
Calculus: Tangent Line
example
Calculus: Taylor Expansion of sin(x)
example
Calculus: Integrals
example
Calculus: Integral with adjustable bounds
example
Calculus: Fundamental Theorem of Calculus
example
Terms of Service
|
Privacy Policy