Avaldis 7: "I" equals sigma "T" to the 4th powerI=σT4
equals=
59856478.0 3 7 359856478.0373
7
Intensité (en W/m^2) calculée avec l'aire sous la courbe de la radiance spectrale
8
Avaldis 9: "I" Subscript, 1 , Baseline equals Start integral from 0 to infinity , end integral, StartFraction, 2 pi "c" squared "h" left parenthesis, "x" , right parenthesis to the negative 5th power Over exp left parenthesis, StartNestedFraction, "h" "c" NestedOver left parenthesis, "x" , right parenthesis "k" "T" , EndNestedFraction , right parenthesis minus 1 , EndFraction "d" "x"I1=∫∞02πc2hx−5exphcxkT−1dx
equals=
59856397.7 8 0 959856397.7809
9
Radiance spectrale (en W/m^2/nm) en fonction de la longueur d'onde (en nm) calculée avec la loi de Planck
10
Avaldis 11: "R" equals StartFraction, 10 to the negative 9th power times 2 pi "c" squared "h" left parenthesis, lambda times 10 to the negative 9th power , right parenthesis to the negative 5th power Over exp left parenthesis, StartNestedFraction, "h" "c" NestedOver lambda times 10 to the negative 9th power "k" "T" , EndNestedFraction , right parenthesis minus 1 , EndFractionR=10−9·2πc2hλ·10−9−5exphcλ·10−9kT−1
equals=
75568.3 1 5 0 7 1 675568.3150716
11
Avaldis 12: lambda equals 563λ=563
400400
700700
12
Divers
Peitke see kaust õpilaste eest.
13
Boutons
Peitke see kaust õpilaste eest.
23
31
toiteallikas
toiteallikas
Maintenir enfoncer la touche "shift" ("majuscule")
et approcher le curseur de l'axe que vous souhaitez zoomer.
"T" equals 5700 KT=5700K
lambda Subscript, "m" "a" "x" , Baseline equals 508 nmλmax=508nm
"I" equals 5.9 8 5 6 4 8 times 10 to the 7th power W/msquaredI=5.985648×107W/m2